【題目】如圖,平行四邊形ABCD的頂點(diǎn)C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點(diǎn)E,BC⊥AC,連接BE,反比例函數(shù) (x>0)的圖象經(jīng)過點(diǎn)D.已知S△BCE=1,則k的值是( )
A. 2 B. ﹣2 C. 3 D. 4
【答案】D
【解析】連接ED、OD,由平行四邊形的性質(zhì)可得出BC=AD,AD⊥AC,根據(jù)同底等高的三角形面積相等即可得出S△BCE=S△DCE,同理得出S△OCD=S△DCE,再利用反比例函數(shù)系數(shù)K幾何意義即可求出結(jié)論.
解:連接ED、OD,如圖所示,
∵四邊形ABCD為平行四邊形,
∴BC=AD,BC∥AD,
∵BC⊥AC,
∴AD⊥AC,
∵S△BCE和S△DCE有相同的底CE,相等的高BC=AD,
∴S△OCD=S△DCE,
∵CD平行于x軸,
∴△OCD與△ECD有相等的高,
∴S△OCD=S△DCE=S△BCE=2=,
∴,
∵反比例函數(shù)在第一象限有圖象,
∴,
故選:D.
“點(diǎn)睛”本題考查了反比例函數(shù)系數(shù)K何意義、平行四邊形的性質(zhì)以及平行線的性質(zhì),利用同底等高的三角形面積相等找出S△OCD=S△DCE=S△BCE是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三臺機(jī)床生產(chǎn)直徑為60mm的螺絲,為了檢驗產(chǎn)品質(zhì)量,從三臺機(jī)床生產(chǎn)的螺絲中各抽取了20個測量其直徑,進(jìn)行數(shù)據(jù)處理后,發(fā)現(xiàn)三組數(shù)據(jù)的平均數(shù)都是60mm,它們的方差依次為S甲2=0.612,S乙2=0.058,S丙2=0.149,根據(jù)以上提供的信息,你認(rèn)為生產(chǎn)螺絲的質(zhì)量最好的是__機(jī)床.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個球,分別是紅球和白球,這些球除顏色外都相同,將球攪勻,先從中任意摸出一個球,恰好摸到紅球的概率為.
(1)求口袋中有幾個紅球?
(2)先從中任意摸出一個球,從余下的球中再摸出一個球,請用列表法或樹狀圖法求兩次摸到的球中一個是紅球和一個是白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DE是AC的垂直平分線.
(1)若AE=6,則AC= ;
(2)若∠ABD=40,∠ADB=70,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P在優(yōu)弧CAB上時,△PBC的面積最大,請保留作圖痕跡,并求出△PBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,是真命題的是( )
A. 相等的角是對頂角
B. 兩條直線被第三條直線所截,同位角相等
C. 如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等
D. 在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寧波市2018年上半年地方財政收入約837.90億元,這個數(shù)精確到( )
A. 百萬位B. 百分位C. 千萬位D. 十分位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.2x+3y=5xyB.(x+3)2=x2+9
C.(xy2)3=x3y6D.x10÷x5=x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com