【題目】閱讀下面材料:
如圖,把沿直線平行移動線段的長度,可以變到的位置;
如圖,以為軸,把翻折,可以變到的位置;
如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;
②指圖中線段與之間的關(guān)系,為什么?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后回答問題。
在進(jìn)行二次根式的化簡與運(yùn)算時,我們有時會碰上如,,一樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡:
(一) ==
(二) =
(三) = = 以上這種化簡的步驟叫做分母有理化。
還可以用以下方法化簡:
(四) =
請用不同的方法化簡。
(1)參照(三)式得=_____________________________________;
參照(四)式得=_____________________________________。
(2)化簡:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△AOC是邊長為2的等邊三角形.
(1)寫出△AOC的頂點(diǎn)C的坐標(biāo):_____.
(2)將△AOC沿x軸向右平移得到△OBD,則平移的距離是_____
(3)將△AOC繞原點(diǎn)O順時針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是_____度
(4)連接AD,交OC于點(diǎn)E,求∠AEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,∠D=∠C,添加下列哪個條件后,仍不能使△ADO≌△BCO的是( )
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(10,0),B(10,6),BC⊥y軸,垂足為C,點(diǎn)D在線段BC上,且AD=AO.
(1)試說明:DO平分∠CDA;
(2)求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與軸交于點(diǎn)A、與軸交于點(diǎn)B,且∠ABO=45°,A(-6,0),直線BC與直線AB關(guān)于軸對稱.
(1)求△ABC的面積;
(2)如圖2,D為OA延長線上一動點(diǎn),以BD為直角邊,D為直角頂點(diǎn),作等腰直角△BDE,求證:AB⊥AE;
(3)如圖3,點(diǎn)E是軸正半軸上一點(diǎn),且∠OAE=30°,AF平分∠OAE,點(diǎn)M是射線AF上一動點(diǎn),點(diǎn)N是線段AO上一動點(diǎn),判斷是否存在這樣的點(diǎn)M,N,使OM+NM的值最?若存在,請寫出其最小值,并加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com