【題目】如圖1,等邊三角形中,D為邊上一點(diǎn),滿足,連接,以點(diǎn)A為中心,將射線順時(shí)針旋轉(zhuǎn)60°,與的外角平分線交于點(diǎn)E.
(1)依題意補(bǔ)全圖1;
(2)求證:;
(3)若點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn)為F,連接.
①求證:;
②若成立,直接寫(xiě)出的度數(shù)為_________°.
【答案】(1)圖見(jiàn)解析;(2)證明見(jiàn)解析;(3)①證明見(jiàn)解析; ②20°.
【解析】
(1)根據(jù)題意,射線順時(shí)針旋轉(zhuǎn)60°,用尺規(guī)作圖法,做出∠DAE = ∠C = 60°,再連接DE,即完成作圖;
(2)在等邊三角形ABC中,由可得出;由射線繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到射線,可得∠DAE =,進(jìn)而得出;由平分∠ABC的外角可得,進(jìn)而推出,由此可證(ASA),再根據(jù)三角形全等的性質(zhì)易證;
(3)①連接,設(shè),根據(jù)點(diǎn)B與點(diǎn)F關(guān)于直線對(duì)稱的性質(zhì)可得,;由易得;在等邊三角形中, 由,,易證,,又因?yàn)?/span>,再根據(jù)三角形AFC的內(nèi)角和定理,可推出,和前面的證明聯(lián)立可得,所以同旁內(nèi)角互補(bǔ),.
②通過(guò)圖中各個(gè)三角形的內(nèi)角和之間的關(guān)系,設(shè)∠BAD=α,通過(guò)證明∠CFA=∠COF推論出,即可計(jì)算出∠BAD=20°.
(1)依題意補(bǔ)全圖形
(2)證明:
∵是等邊三角形,
∴.
∴.
∵射線繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到射線,
∴.
∴.
∴.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
(3)①證明:連接,設(shè),
∵點(diǎn)B與點(diǎn)F關(guān)于直線對(duì)稱,
∴,.
∵,
∴.
∵等邊三角形中,,
∴
∵,
∴.
∴.
∵,
且,
∴.
∴.
∴.
② 由① 知 ,
∴∠EAF=∠F=
∴∠DAF = α,
∵,由②知BE=CD
∴BD=CF
∴∠CFA=∠COF
∴
∴3α=60°
∴α=20°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-2,與x軸的一個(gè)交點(diǎn)在(-3,0)和(-4,0)之間,其部分圖象如圖所示.則下列結(jié)論:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn),,是該拋物線上的點(diǎn),則y1<y2<y3.其中正確結(jié)論的個(gè)數(shù)是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.
(1)梯形ABCD的面積等于 .
(2)如圖1,動(dòng)點(diǎn)P從D點(diǎn)出發(fā)沿DC以DC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿CB以每秒2個(gè)單位的速度向B點(diǎn)運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),Q點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)PQ∥AB時(shí),P點(diǎn)離開(kāi)D點(diǎn)多少時(shí)間?
(3)如圖2,點(diǎn)K是線段AD上的點(diǎn),M、N為邊BC上的點(diǎn),BM=CN=5,連接AN、DM,分別交BK、CK于點(diǎn)E、F,記△ ADG和△ BKC重疊部分的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的邊長(zhǎng)為2,函數(shù)的圖象經(jīng)過(guò)點(diǎn)B,與直線交于點(diǎn)D.
(1)求k的值;
(2)直線與邊所在直線交于點(diǎn)M,與x軸交于點(diǎn)N.
①當(dāng)點(diǎn)D為中點(diǎn)時(shí),求b的值;
②當(dāng)時(shí),結(jié)合函數(shù)圖象,直接寫(xiě)出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小王同學(xué)“過(guò)直線外一點(diǎn)作該直線的平行線”的尺規(guī)作圖過(guò)程.
已知:直線l及直線l外一點(diǎn)P.
求作:直線,使得.
作法:如圖,
①在直線l外取一點(diǎn)A,作射線與直線l交于點(diǎn)B,
②以A為圓心,為半徑畫(huà)弧與直線l交于點(diǎn)C,連接,
③以A為圓心,為半徑畫(huà)弧與線段交于點(diǎn),
則直線即為所求.
根據(jù)小王設(shè)計(jì)的尺規(guī)作圖過(guò)程,,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵,
∴,(______________________)(填推理的依據(jù)).
∵__________,
∴.
∵,
∴.
∴(____________________)(填推理的依據(jù)).
即.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,,、是對(duì)角線上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)靠近點(diǎn)),且,是正方形四邊上的任意一點(diǎn).若是等邊三角形,則 AE的長(zhǎng)為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,-4)和(-2,2).
(1)求的值,并用含的式子表示;
(2)求證:此拋物線與軸有兩個(gè)不同交點(diǎn);
(3)當(dāng)時(shí),若二次函數(shù)滿足隨的增大而減小,求的取值范圍;
(4) 直線上有一點(diǎn)(,5),將點(diǎn)向右平移4個(gè)單位長(zhǎng)度,得到點(diǎn),若拋物線與線段只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形ABCD中,點(diǎn)E,F是對(duì)角線AC的三等分點(diǎn),點(diǎn)P在正方形的邊上,則滿足PE+PF=的點(diǎn)P的個(gè)數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x﹣2與x軸,y軸分別交于點(diǎn)D,C.點(diǎn)G,H是線段CD上的兩個(gè)動(dòng)點(diǎn),且∠GOH=45°,過(guò)點(diǎn)G作GA⊥x軸于A,過(guò)點(diǎn)H作HB⊥y軸于B,延長(zhǎng)AG,BH交于點(diǎn)E,則過(guò)點(diǎn)E的反比例函數(shù)y=的解析式為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com