【題目】如圖①,一個正方體鐵塊放置在圓柱形水槽內(nèi),現(xiàn)以一定的速度往水槽中注水,28s時注滿水槽.水槽內(nèi)水面的高度y(cm)與注水時間x(s)之間的函數(shù)圖象如圖②所示.
(1)正方體的棱長為cm;
(2)求線段AB對應(yīng)的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)如果將正方體鐵塊取出,又經(jīng)過t(s)恰好將此水槽注滿,直接寫出t的值.
【答案】
(1)由題意可得:12秒時,水槽內(nèi)水面的高度為10cm,12秒后水槽內(nèi)高度變化趨勢改變,故正方體的棱長為10cm;故答案為:10;
(2)解:設(shè)線段AB對應(yīng)的函數(shù)解析式為:y=kx+b,
∵圖象過A(12,10),B(28,20),
∴ ,
解得: ,
∴線段AB對應(yīng)的解析式為:y= x+ (12≤x≤28);
(3)解:∵28﹣12=16(s),
∴沒有立方體時,水面上升10cm,所用時間為:16秒,
∵前12秒由立方體的存在,導(dǎo)致水面上升速度加快了4秒,
∴將正方體鐵塊取出,經(jīng)過4秒恰好將此水槽注滿.
【解析】(1)由圖像可知點A是折點,坐標對應(yīng)的水槽內(nèi)水面的高度就等于小正方體的棱長;(2)AB段端點坐標均已知,利用待定系數(shù)法即可求出;(3)由圖像可知,正方體棱長等于整個圓柱高度的一半,所用時間少下半部分少用4分鐘,就是因為正方體的存在少用了,因此取出正方體后,經(jīng)過4秒恰好將水槽注滿.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=90°,OC為一條射線,OE,OF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知∠1+∠2=180°,∠2=∠B,試說明∠DEC+∠C=180°,請完成下列填空:
證明:∵∠1+∠2=180°(已知)
∴_____∥_____(____________________)
∴______=∠EFC(____________________)
又∵2=∠B(已知)
∴∠2=______(等量代換)
∴___________(內(nèi)錯角相等,兩直線平行)
∴∠DEC+∠C=180°(兩直線平行,同旁內(nèi)角互補)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將2×2的正方形網(wǎng)格如圖所示的放置在平面直角坐標系中,每個小正方形的頂點稱為格點,每個小正方形的邊長都是1,正方形ABCD的頂點都在格點上,若直線y=kx(k≠0)與正方形ABCD有公共點,則k不可能是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將八個邊長為1的小正方形擺放在平面直角坐標系中,若過原點的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個單位后所得直線l′的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
在平面直角坐標系xOy中,點P(x0 , y0)到直線Ax+By+C=0的距離公式為:d= .
例如:求點P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴點P0(0,0)到直線4x+3y﹣3=0的距離為d= = .
根據(jù)以上材料,解決下列問題:
(1)點P1(3,4)到直線y=﹣ x+ 的距離為;
(2)已知:⊙C是以點C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣ x+b相切,求實數(shù)b的值;
(3)如圖,設(shè)點P為問題2中⊙C上的任意一點,點A,B為直線3x+4y+5=0上的兩點,且AB=2,請求出S△ABP的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正五邊形ABCDE的邊長為2,連結(jié)AC、AD、BE,BE分別與AC和AD相交于點F、G,連結(jié)DF,給出下列結(jié)論:①∠FDG=18°;②FG=3﹣ ;③(S四邊形CDEF)2=9+2 ;④DF2﹣DG2=7﹣2 .其中結(jié)論正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線平行),
∴∠A=∠F( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com