【題目】如圖,半徑為個單位的圓片上有一點與數(shù)軸上的原點重合,是圓片的直徑.(注:結(jié)果保留)
把圓片沿數(shù)軸向左滾動半周,點到達數(shù)軸上點的位置,點表示的數(shù)是________數(shù)(填“無理”或“有理”),這個數(shù)是________
圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:,,,,
①第________次滾動后,點距離原點最遠
②當圓片結(jié)束運動時,此時點所表示的數(shù)是________.
【答案】無理 -π 3 π
【解析】
(1)直接利用圓的周長公式結(jié)合數(shù)軸得出答案;
(2)①利用滾動方向和滾動周數(shù)結(jié)合數(shù)軸即可得出答案;
②直接利用滾動方向和滾動周數(shù)結(jié)合數(shù)軸即可得出答案.
(1)∵半徑為個單位的圓片上有一點與數(shù)軸上的原點重合,把圓片沿數(shù)軸向左滾動半周,點到達數(shù)軸上點的位置,
∴點C表示的數(shù)是:﹣π,為無理數(shù),
故答案為:無理數(shù);﹣π;
(2)①∵圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:,,,,,
∴第3次滾動后,點A距離原點最遠,距離為5個圓的周長;
②∵=2,
∴表示圓向右滾動了2周,
∴當圓片結(jié)束運動時,此時點所表示的數(shù)是:2π×1×2=4π,
故答案為3;4π.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,如果ABC的周長比AOB的周長長10厘米,則矩形邊AD的長是
A. 5厘米B. 10厘米
C. 7.5厘米D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用黑、白正方形按如圖規(guī)律排列.
(1)第10個和第11圖形中,黑色正方形各有多少個?
(2)找出圖形變化的規(guī)律,說明第n個圖形中黑色正方形的個數(shù)與n的關系.
(3)這列圖形中,是否存在黑色正方形的個數(shù)為2019的圖形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,表示數(shù)在數(shù)軸上的對應點與原點的距離.如:表示在數(shù)軸上的對應點到原點的距離.而,即表示和在數(shù)軸上對應的兩點之間的距離.類似的,有:表示和在數(shù)軸上對應的兩點之間的距離;,所以表示和在數(shù)軸上對應的兩點之間的距離.一般地,點在數(shù)軸上分別表示數(shù)和,那么點和之間的距離可表示為.
利用以上知識:
(1)求代數(shù)式的最小值 .
(2)求代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017貴州省遵義市)如圖,拋物線(a<0,a、b為常數(shù))與x軸交于A、C兩點,與y軸交于B點,直線AB的函數(shù)關系式為.
(1)求該拋物線的函數(shù)關系式與C點坐標;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M′,將OM′繞原點O順時針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在0°到90°之間);
①探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;
②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列計算1+2+22+23+…+224+225的解題過程(主要步驟)。
解:設a=1+2+22+23+…+224+225,
則2a=2+22+23+…+224+225+226,
2a-a=(2+22+23+…+224+225+226)-( 1+2+22+23+…+224+225)=226-1.
所以a=226-1.
通過閱讀,你一定學到了一種解決問題的方法。請你用此方法解決下列問題:
(1)計算:1+5+52+53+…+52016+52017的值.
(2)計算:72+73+…+7n-1+7n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內(nèi)接于⊙O,AC=.
①求∠ABC的度數(shù);
②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關系,并說明理由;
(2)如圖2,已知ABCD的頂點A、B、D在⊙O上,頂點C在⊙O內(nèi),延長BC交⊙O于點E,連接DE.求證:DE=DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖:
(1)用不等號填空:-b 0,|c| 0,|a| |b|,b-c 0,a+b 0,c-a 0.
(2)化簡:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com