【題目】如圖,長(zhǎng)方形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、C兩點(diǎn)的坐標(biāo)分別為(6,0),(0,10),點(diǎn)B在第一象限內(nèi).

(1)寫出點(diǎn)B的坐標(biāo),并求長(zhǎng)方形OABC的周長(zhǎng);

(2)若有過點(diǎn)C的直線CD把長(zhǎng)方形OABC的周長(zhǎng)分成3:5兩部分,D為直線CD與長(zhǎng)方形的邊的交點(diǎn),求點(diǎn)D的坐標(biāo).

【答案】(1)點(diǎn)B的坐標(biāo)為(6,10),長(zhǎng)方形OABC的周長(zhǎng)為32;(2)點(diǎn)D的坐標(biāo)為(2,0)

【解析】試題分析:(1)由AC的坐標(biāo)得到OA,OC的長(zhǎng).由長(zhǎng)方形的性質(zhì)得到BCAB的長(zhǎng),從而得到點(diǎn)B的坐標(biāo)和長(zhǎng)方形OABC的周長(zhǎng);

2CD把長(zhǎng)方形OABC的周長(zhǎng)分為35兩部分得到被分成的兩部分的長(zhǎng)分別為1220然后分兩種情況討論①當(dāng)點(diǎn)DAB上時(shí),②當(dāng)點(diǎn)DOA上時(shí)

試題解析:(1A6,0),C0,10),OA=6OC=10

∵四邊形OABC是長(zhǎng)方形BC=OA=6,AB=OC=10,∴點(diǎn)B的坐標(biāo)為(6,10).OC=10,OA=6,∴長(zhǎng)方形OABC的周長(zhǎng)為2×(6+10)=32

2CD把長(zhǎng)方形OABC的周長(zhǎng)分為35兩部分,∴被分成的兩部分的長(zhǎng)分別為1220

①當(dāng)點(diǎn)DAB上時(shí),如圖,AD=20-10-6=4,所以點(diǎn)D的坐標(biāo)為(64).

②當(dāng)點(diǎn)DOA上時(shí),如圖,OD=12-10=2,所以點(diǎn)D的坐標(biāo)為(2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )

A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新學(xué)期開學(xué),某體育用品商店開展促銷活動(dòng),有兩種優(yōu)惠方案.

方案一:不購買會(huì)員卡時(shí),乒乓球享受8.5折優(yōu)惠,乒乓球拍購買5副(含5副)以上才能享受8.5折優(yōu)惠,5副以下必須按標(biāo)價(jià)購買.

方案二:辦理會(huì)員卡時(shí),全部商品享受八折優(yōu)惠,小健和小康的談話內(nèi)容如下:

會(huì)員卡只限本人使用.

1)求該商店銷售的乒乓球拍每副的標(biāo)價(jià).

2)如果乒乓球每盒10元,小健需購買乒乓球拍6副,乒乓球a盒,請(qǐng)回答下列問題:

①如果方案一與方案二所付錢數(shù)一樣多,求a的值;

②直接寫出一個(gè)恰當(dāng)?shù)?/span>a值,使方案一比方案二優(yōu)惠;

③直接寫出一個(gè)恰當(dāng)?shù)?/span>a值,使方案二比方案一優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)連接在一起的菱形的邊長(zhǎng)都是1cm,一只電子甲蟲從點(diǎn)A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當(dāng)電子甲蟲爬行2014cm時(shí)停下,則它停的位置是(   )

A. 點(diǎn)F B. 點(diǎn)E C. 點(diǎn)A D. 點(diǎn)C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平臺(tái)AB高為12m,在B處測(cè)得樓房CD頂部點(diǎn)D的仰角為45°,底部點(diǎn)C的俯角為30°,求樓房CD的高度( =1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知射線CBOA,∠C=OAB,

(1)求證:ABOC

(2)如圖2,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF.

①當(dāng)∠C=110°時(shí),求∠EOB的度數(shù).

②若平行移動(dòng)AB,那么∠OBC :OFC的值是否隨之發(fā)生變化?若變化,找出變

化規(guī)律;若不變,求出這個(gè)比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。


請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);
(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?
(3)若要使2018年的國民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長(zhǎng)率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知EF⊥AB,垂足為F,CD⊥AB,垂足為D,∠1=∠2,試判斷∠AGD和∠ACB是否相等,為什么?(將解答過程補(bǔ)充完整) 解:∠AGD=∠ACB.理由如下:
∵EF⊥AB,CD⊥AB(已知)
∴∠EFB=∠CDB=90° (
(同位角相等,兩直線平行)
∴∠1=∠ECD(
又∵∠1=∠2(已知)
∴∠ECD=( 等量代換)
∴GD∥CB(
∴∠AGD=∠ACB ().

查看答案和解析>>

同步練習(xí)冊(cè)答案