【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2ax+c交x軸于A,B兩點,交y軸于點C(0,3),tan∠OAC= .
(1)求拋物線的解析式;
(2)點H是線段AC上任意一點,過H作直線HN⊥x軸于點N,交拋物線于點P,求線段PH的最大值;
(3)點M是拋物線上任意一點,連接CM,以CM為邊作正方形CMEF,是否存在點M使點E恰好落在對稱軸上?若存在,請求出點M的坐標;若不存在,請說明理由.
【答案】
(1)
解:∵C(0,3),
∴OC=3,
∵tan∠OAC= ,
∴OA=4,
∴A(﹣4,0).
把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,
得 ,解得: ,
∴拋物線的解析式為y=﹣ x2﹣ x+3
(2)
解:設直線AC的解析式為y=kx+b,
把A(﹣4,0)、C(0,3)代入y=kx+b中,
得: ,解得: ,
∴直線AC的解析式為y= x+3.
設N(x,0)(﹣4<x<0),則H(x, x+3),P(x,﹣ x2﹣ x+3),
∴PH=﹣ x2﹣ x+3﹣( x+3)=﹣ x2﹣ x=﹣ (x+2)2+ ,
∵﹣ <0,
∴PH有最大值,
當x=﹣2時,PH取最大值,最大值為
(3)
解:過點M作MK⊥y軸于點K,交對稱軸于點G,則∠MGE=∠MKC=90°,
∴∠MEG+∠EMG=90°,
∵四邊形CMEF是正方形,
∴EM=MC,∠MEC=90°,
∴∠EMG+∠CMK=90°,
∴∠MEG=∠CMK.
在△MCK和△MEG中, ,
∴△MCK≌△MEG(AAS),
∴MG=CK.
由拋物線的對稱軸為x=﹣1,設M(x,﹣ x2﹣ x+3),則G(﹣1,﹣ x2﹣ x+3),K(0,﹣ x2﹣ x+3),
∴MG=|x+1|,CK=|﹣ x2﹣ x+3﹣3|=|﹣ x2﹣ x|=| x2+ x|,
∴|x+1|=| x2+ x|,
∴ x2+ x=±(x+1),
解得:x1=﹣4,x2=﹣ ,x3=﹣ ,x4=2,
代入拋物線解析式得:y1=0,y2= ,y3= ,y4=0,
∴點M的坐標是(﹣4,0),(﹣ , ),(﹣ , )或(2,0).
【解析】(1)由點C的坐標以及tan∠OAC= 可得出點A的坐標,結(jié)合點A、C的坐標利用待定系數(shù)法即可求出拋物線的解析式;(2)設直線AC的解析式為y=kx+b,由點A、C的解析式利用待定系數(shù)法即可求出直線AC的解析式,設N(x,0)(﹣4<x<0),可找出H、P的坐標,由此即可得出PH關于x的解析式,利用配方法即二次函數(shù)的性質(zhì)即可解決最值問題;(3)過點M作MK⊥y軸于點K,交對稱軸于點G,根據(jù)角的計算依據(jù)正方形的性質(zhì)即可得出△MCK≌△MEG(AAS),進而得出MG=CK.設出點M的坐標利用正方形的性質(zhì)即可得出點G、K的坐標,由正方形的性質(zhì)即可得出關于x的含絕對值符號的一元二次方程,解方程即可求出x值,將其代入拋物線解析式中即可求出點M的坐標.本題考查了待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、正方形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關鍵是:(1)利用待定系數(shù)法求出拋物線解析式;(2)根據(jù)二次函數(shù)的性質(zhì)解決最值問題;(3)根據(jù)正方形的性質(zhì)得出關于x的含絕對值符號的一元二次方程.本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)正方形的性質(zhì)找出關于x的含絕對值符號的一元二次方程,解方程求出點的橫坐標是關鍵.
【考點精析】通過靈活運用二次函數(shù)的性質(zhì)和正方形的性質(zhì),掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。徽叫嗡膫角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),
C(3,4)
⑴ 作出與△ABC關于y軸對稱△A1B1C1,并寫出 三個頂點的坐標為:A1( ),B1( ),C1( );
⑵ 在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標;
⑶ 在 y 軸上是否存在點 Q,使得S△AOQ=S△ABC,如果存在,求出點 Q 的坐標,如果不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題
北京時間2015年7月31日,國際奧委會主席巴赫宣布:中國北京獲得2022年第24界冬季奧林匹克運動會舉辦權,近期,新建北京至張家口鐵路可行性研究報告已經(jīng)獲得國家發(fā)改委批復,鐵路全長約180千米,按照設計,京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時比普通快車用時少了20分鐘,求京張高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察圖形:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形_________________;
②線段AF與線段CE的數(shù)量關系是_________________;
(2)問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
(3)拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.
求證:DF=2CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程組解應用題:打折前,買 10 件 A 商品和 5 件 B 商品共用了 400 元,買 5 件 A 商品和 10件 B 商品共用了 350 元.
(1)求打折前 A 商品、B 商品每件分別多少錢?
(2)打折后,買 100 件 A 商品和 100 件 B 商品共用了 3800 元.比不打折少花多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼.有一種用“因式分解”法產(chǎn)生的密碼,方便記憶.原理是:如對于多項式x4-y4,因式分解的結(jié)果是(x-y)(x+y)·(x2+y2),若取x=9,y=9時,則各個因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作為一個六位數(shù)的密碼.對于多項式4x3-xy2,取x=10,y=10時,用上述方法產(chǎn)生的密碼共有多少種?請你分別寫出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com