【題目】已知AB為⊙O的直徑,CD為⊙O的弦,CD∥AB,過點(diǎn)B的切線與射線AD交于點(diǎn)M,連接AC,BD.
(1)如圖l,求證:AC=BD;
(2)如圖2,延長AC、BD交于點(diǎn)F,作直徑DE,連接AE、CE,CE與AB交于點(diǎn)N,求證:∠AFB=2∠AEN;
(3)如圖3,在(2)的條件下,過點(diǎn)M作MQ⊥AF于點(diǎn)Q,若MQ:QC=3:2,NE=2,求QF的長.
【答案】
(1)證明:連接OC,OD,
∵CD∥AB,
∴∠DAB=∠ADC,
∵∠DOB=2∠DAB,∠COA=2∠CDA,
∴∠COA=∠DOB,
∴AC=BD;
(2)連接OC,
∵∠COA=∠DOB,OA=OB=OC=OD,
∴∠CAB=∠DBA,
∴△FBA是等腰三角形,
∵DE是⊙O的直徑,
∴∠ECD=90°,
∵CD∥AB,
∴∠ANC=90°,
∴AB⊥CE,
∴AC=AE,
∴∠CAN=∠EAN=∠ABF,∠ACE=∠AEN,
∵∠FAB+∠FBA+∠F=180°,∠CAE+∠AEC+∠ACE=180°,
∴∠F=∠ACE+∠AEC,
∴∠AFB=2∠AEN;
(3)解:連接BC交AD于P,
∵AC=BD,
∴ = ,
∴∠PAB=∠PBA,
∴PA=PB,∠PBM=∠PMB,
∴PB=PM,
∴P為AM的中點(diǎn),
∵M(jìn)Q⊥AF,BC⊥AF,
∴BC∥MQ,
∴ = ,
∴AC=CQ,
∵ = ,
∴ = ,
∴tan∠MAQ= ,
∴tan∠F= ,
設(shè)DF=3k,AD=4k,由勾股定理得,AF=5k=BF,
∴BD=2k,
∴tan∠ABD=2,
∴DE為直徑,
∴∠EAD=90=∠BDM,
∴AE∥BD,
∴∠EAN=∠ABD,
∴tan∠EAN=2,
∵NE=2,
∴AN=1,CN=2,
∴BN=4,AE=BD= ,
∴DF= ,AC=BD= =CQ,
∴QF=
【解析】(1)由平行線的內(nèi)錯角相等性質(zhì)、圓周角定理可推出AC=BD;(2)由于∠AEN是圓周角,因此2∠AEN可轉(zhuǎn)化為圓心角∠COA,問題轉(zhuǎn)化為證∠COA=∠AFB,兩個(gè)角都是等腰三角形的頂角,轉(zhuǎn)化為證底角相等,即∠CAN=∠EAN=∠ABF,由垂徑定理推論易證出結(jié)論;(3)利用圓周角定理的推論可推出tan∠MAQ= ,進(jìn)而推出tan∠F= ,設(shè)出參數(shù),求出AC,進(jìn)而求出AQ,用AF減去AQ可求出QF
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,分別延長OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,王老師隨機(jī)抽查部分學(xué)生,并對其暑假期間的課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成如圖所示但不完整的統(tǒng)計(jì)圖.已知抽查的學(xué)生在暑假期間閱讀量為2本的人數(shù)占抽查總?cè)藬?shù)的20%,根據(jù)所給出信息,解答下列問題:
(1)求被抽查學(xué)生人數(shù)并直接寫出被抽查學(xué)生課外閱讀量的中位數(shù);
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若規(guī)定:假期閱讀3本及3本以上課外書者為完成假期作業(yè),據(jù)此估計(jì)該校1500名學(xué)生中,完成假期作業(yè)的有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和同桌小聰在課后復(fù)習(xí)時(shí),對課本“目標(biāo)與評定”中的一道思考題,進(jìn)行了認(rèn)真的探索。
(思考題)如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點(diǎn)B將向外移動多少米?
(1)請你將小明對“思考題”的解答補(bǔ)充完整:
解:設(shè)點(diǎn)B將向外移動x米,即BB1=x,
則B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程 ,
解方程得x1= ,x2= ,
∴點(diǎn)B將向外移動 米。
(2)解完“思考題”后,小聰提出了如下兩個(gè)問題:
(問題一)在“思考題”中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
(問題二)在“思考題”中,梯子的頂端從A處沿墻AC下滑的距離與點(diǎn)B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個(gè)問題。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為16,BC=8.現(xiàn)將△ABC沿直線BC向右平移a個(gè)單位到△DEF的位置.
(1)當(dāng)△ABC所掃過的面積為32時(shí),求a的值;
(2)連接AE、AD,當(dāng)AB=5,a=5時(shí),試判斷△ADE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計(jì),并繪制如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問題:
(1)該超市“元旦”期間共銷售 個(gè)綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計(jì)圖中所對應(yīng)的扇形圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個(gè),請你估計(jì)這個(gè)分店銷售的B種品牌的綠色雞蛋的個(gè)數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)|﹣3|+(﹣1)2016×(π﹣3.14)0﹣()﹣2+2﹣3
(2)利用乘法公式計(jì)算:20182﹣2017×2019
(3)已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.
(4)已知x2﹣5x=14,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)C(3,1)
(1)試確定上述比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點(diǎn)D(m,n)是反比例函數(shù)圖象上的一動點(diǎn),其中0<m<3,過點(diǎn)C作直線AC⊥x軸于點(diǎn)A,交OD的延長線于點(diǎn)B;若點(diǎn)D是OB的中點(diǎn),DE⊥x軸于點(diǎn)E,交OC于點(diǎn)F,試求四邊形DFCB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com