【題目】如圖,AB是長為10m,傾斜角為30°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14

【答案】大樓CE的高度是26m

【解析】

BFAE于點(diǎn)F,根據(jù)三角函數(shù)的定義及解直角三角形的方法求出BF、CD即可.

解:作BFAE于點(diǎn)F.則BFDE

在直角△ABF中,sinBAF,則BFABsinBAF10×5m).

在直角△CDB中,tanCBD,則CDBDtan65°=10×2.14=21.4m).

CEDE+CDBF+CD5+21.426m).

答:大樓CE的高度是26m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yx24x+3

1)求其圖象與x軸交點(diǎn)A、B的坐標(biāo)(AB左邊);

2)在坐標(biāo)系中畫出函數(shù)圖象;

3)若函數(shù)圖形的頂點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE90°,AB4,AE2,其中△ABC固定,△ADE繞點(diǎn)A360°旋轉(zhuǎn),點(diǎn)FM、N分別為線段BEBC、CD的中點(diǎn),連接MN、NF

問題提出:(1)如圖1,當(dāng)AD在線段AC上時,則∠MNF的度數(shù)為   ,線段MN和線段NF的數(shù)量關(guān)系為  ;

深入討論:(2)如圖2,當(dāng)AD不在線段AC上時,請求出∠MNF的度數(shù)及線段MN和線段NF的數(shù)量關(guān)系;

拓展延伸:(3)如圖3,△ADE持續(xù)旋轉(zhuǎn)過程中,若CEBD交點(diǎn)為P,則△BCP面積的最小值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(I)圓中最長的弦是________;

(Ⅱ)如圖①,AB 是⊙O 的弦,AB=8,點(diǎn) C 是⊙O 上的一個動點(diǎn),∠ACB=45°, 若點(diǎn) M、N 分別是 AB、AC 的中點(diǎn),則 MN 長度的最大值是___;

(Ⅲ)如圖②,△ABC 中,∠BAC=60°,∠ABC=45°,AB=4,D 是邊 BC 上的一個動點(diǎn),以 AD 為直徑畫⊙O,分別交 AB、AC 于點(diǎn) E、F,連接 EF,則線段 EF 長度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中任取一個數(shù)作為k的值,則能使分式方程有非負(fù)實(shí)數(shù)解且使二次函數(shù)y=x2+2xk1的圖象與x軸無交點(diǎn)的概率為( 。

A.B.C.D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,燈在距地面6米的A處,與燈柱AB相距3米的地方有一長3米的木棒CD直立于地面.

1)在圖中畫出木棒CD的影子,并求出它的長度;

2)當(dāng)木棒繞其與地面的固定端點(diǎn)D按順時針方向旋轉(zhuǎn)到地面時,其影子的變化有什么規(guī)律?你能求出其影長的取值范圍嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)20小時,他應(yīng)付多少元的上網(wǎng)費(fèi)用?

(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣州火車南站廣場計(jì)劃在廣場內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.

(1)A,B兩種花木的數(shù)量分別是多少棵?

(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務(wù)?

查看答案和解析>>

同步練習(xí)冊答案