【題目】已知矩形紙片ABCD中,AB=2,BC=3.
操作:將矩形紙片沿EF折疊,使點(diǎn)B落在邊CD上.
探究:⑴如圖1,若點(diǎn)B與點(diǎn)D重合,你認(rèn)為和全等嗎?如果全等,請(qǐng)給出證明,如果不全等,請(qǐng)說明理由;
⑵如圖2,若點(diǎn)B與CD的中點(diǎn)重合,請(qǐng)你判斷和之間的關(guān)系,如果全等,只需寫出結(jié)果,如果相似,請(qǐng)寫出結(jié)果和相應(yīng)的相似比;
⑶如圖2,請(qǐng)你探索,當(dāng)點(diǎn)B落在CD邊上何處,即的長度為多少時(shí),與全等.
【答案】(1)全等,理由見解析;(2)△B1DG和△EA1G全等,△FCB1與△B1DG相似,相似比為4:3;(3)當(dāng)B1C=3時(shí),△FCB1與△B1DG全等.
【解析】
(1)由四邊形ABCD是矩形,可得∠A=∠B=∠C=∠ADC=90°,AB=CD,由折疊的性質(zhì)可得:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,然后利用同角的余角相等,可證得∠A1DE=∠CDF,則可利用ASA證得△EDA1和△FDC全等;
(2)易得△B1DG和△EA1G全等,△FCB1與△B1DG相似,然后設(shè)FC=x,由勾股定理可得方程x2+12=(3-x)2,解此方程即可求得答案;
(3)設(shè)B1C=a,則有FC=B1D=2-a,B1F=BF=1+a,在直角△FCB1中,可得(1+a)2=(2-a)2+a2,解此方程即可求得答案.
(1)全等,
證明:∵四邊形ABCD是矩形,
∴∠A=∠B=∠C=∠ADC=90,AB=CD,
由題意知:∠A=∠A1,∠B=∠A1DF=90,CD=A1D,
∴∠A1=∠C=90,∠CDF+∠EDF=90,
∴∠A1DE=∠CDF,
在△EDA1和△FDC中,
,
∴△EDA1≌△FDC(ASA);
(2)△B1DG和△EA1G全等,△FCB1與△B1DG相似,
設(shè)FC=x,則B1F=BF=3x,B1C=DC=1,
∴x2+12=(3x)2,
∴x=,
∴△FCB1與△B1DG相似,相似比為4:3.
(3)△FCB1與△B1DG全等,
設(shè)B1C=a,則有FC=B1D=2a,B1F=BF=1+a,
在直角△FCB1中,可得(1+a)2=(2a)2+a2,
整理得a26a+3=0,
解得:a=3 (另一解舍去),
∴當(dāng)B1C=3時(shí),△FCB1與△B1DG全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小李制作了一張△ABC紙片,點(diǎn)D、E分別在邊AB、AC上,現(xiàn)將△ABC沿著DE折疊壓平,使點(diǎn)A落在點(diǎn)A′位置.若∠A=75°,則∠1+∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架5米長的梯子AB斜靠在一面墻上,梯子底端B到墻底的垂直距離BC為3米.
(1)求這個(gè)梯子的頂端A到地面的距離AC的值;
(2)如果梯子的頂端A沿墻AC豎直下滑1米到點(diǎn)D處,求梯子的底端B在水平方向滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=9,AC=6,BC=12,點(diǎn)M在AB邊上,且AM=3,過點(diǎn)M作直線MN與AC邊交于點(diǎn)N,使截得的三角形與原三角形相似,則MN=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師想給李老師打電話,但忘了電話號(hào)碼中的最后兩個(gè)數(shù)字,只記得號(hào)碼是:1 3 9 0 7 9 7 8 9○□(○,□表示忘記的最后兩個(gè)數(shù)字).王老師還記得○與□都是大于3的偶數(shù).
(1)用列舉法表示○□所有的可能情況;
(2)若后兩位數(shù)字相同,王老師一次拔對(duì)李老師電話號(hào)碼的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=BC,AB⊥BC,過點(diǎn)B作直線l,過點(diǎn)A作AE⊥l于E,過點(diǎn)C作CF⊥l于F,則下列說法中正確的是( )
A.AC=AE+BEB.EF=AE+EBC.AC=EB+CFD.EF=EB+CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).
(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;
(2)若點(diǎn)E、F分別為AB、CA延長線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com