【題目】如圖已知拋物線y=ax23ax4a(a0)的圖象與x軸交于A、B兩點(diǎn)(AB的左側(cè)),與y的正半軸交于點(diǎn)C,連結(jié)BC,二次函數(shù)的對(duì)稱軸與x軸的交點(diǎn)為E

(1)拋物線的對(duì)稱軸與x軸的交點(diǎn)E坐標(biāo)為_____,點(diǎn)A的坐標(biāo)為_____;

(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;

(3)(2)的條件下,如圖②Q(m,0)x的正半軸上一點(diǎn),過(guò)點(diǎn)Qy軸的平行線,與直線BC交于點(diǎn)M,與拋物線交于點(diǎn)N,連結(jié)CN,將△CMN沿CN翻折,M的對(duì)應(yīng)點(diǎn)為M′.在圖中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)E(,0),A(10);(2)y=;(3)存在,點(diǎn)Q坐標(biāo)為(0)( ,0)

【解析】

1)根據(jù)對(duì)稱軸公式可以求出點(diǎn)E坐標(biāo),設(shè)y0,解方程即可求出點(diǎn)A坐標(biāo).

2)如圖中,設(shè)E與直線BC相切于點(diǎn)D,連接DE,則DEBC,由tanOBC,列出方程即可解決.

3)分兩種情形當(dāng)N在直線BC上方,當(dāng)N在直線BC下方,分別列出方程即可解決.

解:(1)∵對(duì)稱軸x=,

點(diǎn)E坐標(biāo)(,0),

y=0,則有ax23ax4a=0,

∴x=14,

點(diǎn)A坐標(biāo)(10)

故答案分別為(,0),(10)

(2)如圖中,設(shè)⊙E與直線BC相切于點(diǎn)D,連接DE,則DE⊥BC,

∵DE=OE=,EB=,OC=4a,

∴DB=

∵tan∠OBC=,

,解得a=,

拋物線解析式為y=

(3)如圖中,由題意∠M′CN=∠NCB,

∵M(jìn)N∥OM′,

∴∠M′CN=∠CNM

∴MN=CM,

點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,3),

直線BC解析式為y=x+3,BC=5

∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OCF,

∵sin∠BCO=

,

∴CM=m,

當(dāng)N在直線BC上方時(shí),﹣m2+m+3(m+3)=m,

解得:m=0(舍棄)

∴Q1(,0)

當(dāng)N在直線BC下方時(shí),(m+3)(m2+m+3)=m

解得m=0(舍棄),

∴Q2(,0),

綜上所述:點(diǎn)Q坐標(biāo)為(,0)( ,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點(diǎn)女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無(wú)人機(jī)在五峰山隧道正上空點(diǎn)P處測(cè)得黃石大橋西端點(diǎn)A的俯角為30°,東端點(diǎn)B(隧道西進(jìn)口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長(zhǎng)175米,隧道BC的長(zhǎng)約多少米(計(jì)算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)yax2+bx+c(a≠0)的圖象與x軸交于A(1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣2),頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)E

(1)求該二次函數(shù)的解析式;

(2)設(shè)M為該拋物線對(duì)稱軸左側(cè)上的一點(diǎn),過(guò)點(diǎn)M作直線MNx軸,交該拋物線于另一點(diǎn)N.是否存在點(diǎn)M,使四邊形DMEN是菱形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)連接CE(如圖2),設(shè)點(diǎn)P是位于對(duì)稱軸右側(cè)該拋物線上一點(diǎn),過(guò)點(diǎn)PPQx軸,垂足為Q.連接PE,請(qǐng)求出當(dāng)△PQE與△COE相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)的中點(diǎn),的弦,且,垂足為,連接于點(diǎn),連接,

(1)求證:;

(2),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn).若以P,B,C為頂點(diǎn)的三角形是等腰三角形,則P,A(P,A兩點(diǎn)不重合)兩點(diǎn)間的最短距離為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母)

①作線段AC的垂直平分線l,交AC于點(diǎn)O;

②連接BO并延長(zhǎng),在BO的延長(zhǎng)線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(0,0)B(2,0)AP1B是等腰直角三角形,且∠P190°,把AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到BP2C,把BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到CP3D,依此類推,得到的等腰直角三角形的直角頂點(diǎn)P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形ABCD的位置如圖所示,解答下列問題:

1)將四邊形ABCD先向左平移4個(gè)單位,再向下平移6個(gè)單位,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;

2)將四邊形A1B1C1D1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)90°,得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案