【題目】2016年是中國工農(nóng)紅軍長征勝利80周年,某商家用1200元購進了一批長征勝利主題紀念衫,上市后果然供不應(yīng)求,商家又用2800元購進了第二批這種紀念衫,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.
(1)該商家購進的第一批紀念衫單價是多少元?
(2)若兩批紀念衫按相同的標價銷售,最后剩下20件按標價八折優(yōu)惠賣出,如果兩批紀念衫全部售完利潤不低于640元(不考慮其它因素),那么每件紀念衫的標價至少是多少元?
【答案】(1)該商家購進第一批紀念衫單價是30元;(2)每件紀念衫的標價至少是40元.
【解析】
(1)設(shè)未知量為x,根據(jù)所購數(shù)量是第一批購進量的2倍得出方程式,解出方程即可得出結(jié)論,此題得以解決.
(2)設(shè)未知量為y,根據(jù)題意列出一元一次不等式,解不等式可得出結(jié)論.
(1)設(shè)該商家購進第一批紀念衫單價是x元,則第二批紀念衫單價是(x+5)元,
由題意,可得:,
解得:x=30,
檢驗:當x=30時,x(x+5)≠0,
∴原方程的解是x=30
答:該商家購進第一批紀念衫單價是30元;
(2)由(1)得購進第一批紀念衫的數(shù)量為1200÷30=40(件),則第二批的紀念衫的數(shù)量為80(件)
設(shè)每件紀念衫標價至少是a元,由題意,可得:
40×(a﹣30)+(80﹣20)×(a﹣35)+20×(0.8a﹣35)≥640,
化簡,得:116a≥4640
解得:a≥40,
答:每件紀念衫的標價至少是40元.
科目:初中數(shù)學 來源: 題型:
【題目】(1)特例探究.
如圖(1),在等邊三角形ABC中,BD是∠ABC的平分線,AE是BC邊上的高線,BD和AE相交于點F.
請你探究是否成立,請說明理由;請你探究是否成立,并說明理由.
(2)歸納證明.
如圖(2),若△ABC為任意三角形,BD是三角形的一條內(nèi)角平分線,請問一定成立嗎?并證明你的判斷.
(3)拓展應(yīng)用.
如圖(3),BC是△ABC外接圓⊙O的直徑,BD是∠ABC的平分線,交⊙O于點E,過點O作BC的垂線,交BA的延長線于點F,交BD于點G,連接CG,其中cos∠ACB=,請直接寫出的值;若△BGF的面積為S,請求出△COG的面積(用含S的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知O為直線AD上一點,OB是∠AOC內(nèi)部一條射線且滿足∠AOB與∠AOC互補,OM,ON分別為∠AOC,∠AOB的平分線.
(1)∠COD與∠AOB相等嗎?請說明理由;
(2)若∠AOB=30°,試求∠AOM與∠MON的度數(shù);
(3)若∠MON=42°,試求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的頂點A(1,1),B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,則一次變換后頂點C的坐標為____,如果這樣連續(xù)經(jīng)過2 017次變換后,等邊△ABC的頂點C的坐標為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推進“傳統(tǒng)文化進校園”活動,某校準備成立“經(jīng)典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個課外活動小組.學生報名情況如圖(每人只能選擇一個小組):
(1)報名參加課外活動小組的學生共有 人,將條形圖補充完整;
(2)扇形圖中m= ,n= ;
(3)根據(jù)報名情況,學校決定從報名“經(jīng)典誦讀”小組的甲、乙、丙、丁四人中隨機安排兩人到“地方戲曲”小組,甲、乙恰好都被安排到“地方戲曲”小組的概率是多少?請用列表或畫樹狀圖的方法說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對角線BD的中點O的直線分別交AB、CD于點E、F,連接DE,BF.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖,已知它的底面形狀是正方形,高為12cm.
(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?
(2)若1平方米硬紙板價格為5元,則制作10個這的包裝盒需花費多少錢?(不考慮邊角損耗)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若拋物線L2:y=mx2+nx(m≠0)與拋物線L1:y=ax2+bx(a≠0)的開口大小相同,方向相反,且拋物線L2經(jīng)過L1的頂點,我們稱拋物線L2為L1的“友好拋物線”.
(1)若L1的表達式為y=x2﹣2x,求L1的“友好拋物線”的表達式;
(2)已知拋物線L2:y=mx2+nx為L1:y=ax2+bx的“友好拋物線”.求證:拋物線L1也是L2的“友好拋物線”;
(3)平面上有點P(1,0),Q(3,0),拋物線L2:y=mx2+nx為L1:y=ax2的“友好拋物線”,且拋物線L2的頂點在第一象限,縱坐標為2,當拋物線L2與線段PQ沒有公共點時,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com