【題目】如圖,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下列結(jié)論:
①△ODC是等邊三角形 ②BC=2AB ③∠AOE=135° ④S△AOE=S△COE

A.1
B.2
C.3
D.4

【答案】C
【解析】解:∵矩形ABCD中,AE平分∠BAD,
∴∠BAE=45°,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=45°+15°=60°,
又∵矩形中OA=OB=OC=OD,
∴△AOB是等邊三角形,
∴∠AOB=∠COD=60°,
∴△ODC是等邊三角形,故①正確;
由等邊三角形的性質(zhì),AB=OA,
∴AC=2AB,
由垂線段最短BC<AC,
∴BC<2AB,故②錯(cuò)誤;
∵∠BAE=45°,∠ABE=90°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BO=BE,
∵∠COB=180°-60°=120°,
∴∠OBC=30°,∠BOE= (180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正確;
∵△AOE和△COE的底邊AO=CO,點(diǎn)E到AC的距離相等,
∴S△AOE=S△COE , 故④正確;
綜上所述,正確的結(jié)論是①③④.
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資建了一商場,共有商鋪30間,據(jù)預(yù)測(cè),當(dāng)每間租金定為10萬元,可全部租出,每間的年租金每增加5000元,少租出商鋪1間,該公司要為租出的商鋪每間每年交各種費(fèi)用1萬元,未租出的商鋪每間每年交各種費(fèi)用5000元.
(1)當(dāng)每間商鋪的年租金為l3萬元時(shí),能租出多少間?
(2)若從減少空鋪的角度來看,當(dāng)每間商鋪的年租金為多少萬元時(shí),該公司的年收益為275萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣4|+ cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動(dòng)過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動(dòng)之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過程中移動(dòng)盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小盤從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小盤從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動(dòng)過程的規(guī)律,計(jì)算n=6時(shí),h(6)=( )

A.11
B.31
C.63
D.127

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB為⊙O直徑,以O(shè)A為直徑作⊙M.過B作⊙M得切線BC,切點(diǎn)為C,交⊙O于E.
(1)在圖中過點(diǎn)B作⊙M作另一條切線BD,切點(diǎn)為點(diǎn)D(用尺規(guī)作圖,保留作圖痕跡,不寫作法,不用證明);
(2)證明:∠EAC=∠OCB;
(3)若AB=4,在圖2中過O作OP⊥AB交⊙O于P,交⊙M的切線BD于N,求BN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB= ,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0)與點(diǎn)(-2,6).

(1)求拋物線的函數(shù)解析式;
(2)直線m與C相切于點(diǎn)A,交y軸于點(diǎn)D,求證:AD//OB;
(3)在(2)的條件下,點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng);點(diǎn)P的速度為每秒1個(gè)單位長,點(diǎn)Q的速度為每秒2個(gè)單位長,當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動(dòng)點(diǎn),連結(jié)AC并延長交⊙O于D,過點(diǎn)D作圓的切線交OB的延長線于E,已知OA=8.

(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長;
(3)當(dāng)∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案