【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,若點A(﹣1,y1)、B(﹣6,y2)是它圖象上的兩點,則y1與y2的大小關(guān)系是( )

A.y1<y2
B.y1=y2
C.y1>y2
D.不能確定

【答案】C
【解析】 解:由圖可知,二次函數(shù)的對稱軸為直線x=﹣3,
∴x=﹣6和x=0時的函數(shù)值相同,
∵x>﹣3時,y隨x的增大而減小,
∴x=0時的函數(shù)值小于x=﹣1時的函數(shù)值,
∴y1>y2
故選C.
【考點精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是DCP的平分線上一點.若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請你完成余下的證明過程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點,則當AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B.有人在直線AB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑CD為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).

(1)如圖,建立直角坐標系,求此拋物線的解析式;
(2)如果豎直擺放7個圓柱形桶時,網(wǎng)球能不能落入桶內(nèi)?
(3)當豎直擺放圓柱形桶至多多少個時,網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為( 。

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在5×4正方形網(wǎng)格中,有A,B,C三個格點(線與線的交點).

(1)若小正方形邊長為1,則AC= , AB=
(2)在圖中再找出一個格點D,滿足:D與A,B,C三點中的兩點組成的三角形恰好與△ABC相似:∽△ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1在平面直角坐標系中.等腰Rt△OAB的斜邊OA在x軸上.P為線段OB上﹣動點(不與O,B重合).過P點向x軸作垂線.垂足為C.以PC為邊在PC的右側(cè)作正方形PCDM.OP= t、OA=3.設(shè)過O,M兩點的拋物線為y=ax2+bx.其頂點N(m,n)

(1)寫出t的取值范圍 , 寫出M的坐標:();
(2)用含a,t的代數(shù)式表示b;
(3)當拋物線開向下,且點M恰好運動到AB邊上時(如圖2)
①求t的值;
②若N在△OAB的內(nèi)部及邊上,試求a及m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的解析式為y=ax2+bx+c(a、b、c為常數(shù),a≠0),且a2+ab+ac<0,下列說法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有兩個不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函數(shù)的圖象與坐標軸有三個不同交點,
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有50個房間可供游客居住,當每個房間每天的定價為180元時,房間會全部住滿,當每個房間每天的定價增加10元時,就會有一個房間空閑,如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間的定價增加x元(x為10的整數(shù)倍),此時入住的房間數(shù)為y間,賓館每天的利潤為w元.
(1)直接寫出y(間)與x(元)之間的函數(shù)關(guān)系;
(2)如何定價才能使賓館每天的利潤w(元)最大?
(3)若賓館每天的利潤為10800元,則每個房間每天的定價為多少元?

查看答案和解析>>

同步練習冊答案