【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)得到矩形GBEF,點A落在矩形ABCD的邊CD上,連結CE,CF,若∠CEF=α,則tanα=_____.
【答案】.
【解析】
過C點作MN⊥BG,交BG于M,交EF于N,由旋轉(zhuǎn)的性質(zhì)可得∠ABC=∠GBE=90°,BA=BG=5,BC=BE=3,由勾股定理可求CG=4,由銳角三角函數(shù)可求CM的長,即可求BM的長,由題意可證四邊形BENM是矩形,可求EN,CN的長,即可求解.
過C點作MN⊥BG,交BG于M,交EF于N,
由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABC=∠GBE=90°,BA=BG=5,BC=BE=3,
由勾股定理得,CG===4,
∵sin∠GBC=,
∴
∴CM=,
∴BM==
∵MN⊥BG,∠GBE=∠BEF=90°,
∴四邊形BENM是矩形,
∴MN=BE=3,BM=EN=,
∴CN=3﹣=,
∴tanα===
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點P從點A出發(fā)沿A→B→C路徑勻速運動到點C,到達點C時停止運動,過點P作PQ⊥AC于點Q. 若△APQ的面積為y,AQ的長為x,則下列能反映y與x之間的大致圖象是 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y=kx-1(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式與點B坐標;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)的圖象在第一象限交于點A(8,6),與y軸的負半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和的表達式;
(2)已知點C(0,10),試在該一次函數(shù)圖象上確定一點M,使得MB=MC。求此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+2ax+c(a<0)的圖象與x軸交于A、B兩點,與y軸交于C點,頂點為D,一次函數(shù)y=mx﹣3的圖象與y軸交于E點,與二次函數(shù)的對稱軸交于F點,且tan∠FDC=.
(1)求a的值;
(2)若四邊形DCEF為平行四邊形,求二次函數(shù)表達式.
(3)在(2)的條件下設點M是線段OC上一點,連接AM,點P從點A出發(fā),先以1個單位長度/s的速度沿線段AM到達點M,再以個單位長度/s的速度沿MC到達點C,求點P到達點C所用最短時間為 s(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知的直徑AB垂直弦CD于點E,過C點作CG∥AD交AB延長線于點G,連結CO并延長交AD于點F,且CF⊥AD.
(1)求證:CG是⊙O的切線;
(2)若AB=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b交y軸于點A,交x軸于點B,S△AOB=.
(1)求b的值;
(2)點C以每秒1個單位長度的速度從O點出發(fā)沿x軸向點B運動,點D以每秒2個單位長度的速度從A點出發(fā)沿y軸向點O運動,C,D兩點同時出發(fā),當點D運動到點O時,C,D兩點同時停止運動.連接CD,設點C的運動時間為t秒,△CDO的面積為S,求S與t的函數(shù)關系式(不要求寫出自變量t的取值范圍);
(3)在(2)條件下,過點C作CE⊥CD交AB于點E,過點D作DF∥x軸交AB于點F,過點F作FH⊥CE,垂足為H.在CH上取點M,使得MH:HE=8:33,連接FM,若∠FMH=∠FEH,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是菱形的對角線上一動點,過作垂直于的直線交菱形的邊于、兩點,設,,,則的面積為,則關于的函數(shù)圖象的大致形狀是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com