【題目】在平面直角坐標(biāo)系中,拋物線頂點為,且該拋物線與軸交于,兩點(點在點的左側(cè)).我們規(guī)定:拋物線與軸圍成的封閉區(qū)域稱為區(qū)域(不包含邊界);橫、縱坐標(biāo)都是整數(shù)的點稱為整點.

1)求拋物線頂點的坐標(biāo)(用含的代數(shù)式表示);

2)如果拋物線經(jīng)過.

①求的值;

②在①的條件下,直接寫出區(qū)域內(nèi)整點的個數(shù).

3)如果拋物線區(qū)域內(nèi)有4個整點,直接寫出的取值范圍.

【答案】1;(2)①;②6個;(3.

【解析】

1)將拋物線改寫為頂點式,即可得到頂點坐標(biāo);

2)①將(1,3)代入,即可求出的值;②根據(jù)函數(shù)圖像可判斷出整數(shù)的個數(shù);

3)分兩種情況討論,根據(jù)有4個整點畫出圖像,可求出 的取值范圍.

1)∵,

∴該拋物線的頂點為.

2)①∵拋物線經(jīng)過

,解得.

②當(dāng)時,

y=0,則,解得,

設(shè)拋物線與x軸交于AB兩點,則A-1,0),B3,0),拋物線圖像如下圖所示,

當(dāng)時,,所以(0,1)和(0,2)兩個整數(shù)點在區(qū)域,

當(dāng)時,,所以(1,1)和(1,2)兩個整數(shù)點在區(qū)域,

當(dāng)時,,所以(2,1)和(2,2)兩個整數(shù)點在區(qū)域

綜上所述,此區(qū)域內(nèi)整點的個數(shù)為6個.

(3)當(dāng)時,

∴拋物線與y軸的交點為(0,-3a),

當(dāng)時,

當(dāng)時,

,則函數(shù)圖像如下圖所示,

由圖像可知,如果拋物線區(qū)域內(nèi)有4個整點,

,解得:

,則函數(shù)圖像如下圖所示,

由圖像可知,如果拋物線區(qū)域內(nèi)有4個整點,

,解得:.

綜上所述,如果拋物線區(qū)域內(nèi)有4個整點,則的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,EAB邊上一點,且∠A=EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=BEF,其中結(jié)論正確的個數(shù)是( 。

A.3

B.4

C.1

D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位為了創(chuàng)建城市文明單位,準備在單位的墻(線段MN所示)外開辟一處長方形的上地進行綠化美化,除墻體外三面要用柵欄圍起來,計劃用柵欄50米,設(shè)AB的長為x米,長方形的面積為y平方米.

1)請求出yx的函數(shù)關(guān)系式(不需寫出自變量的取值范圍)

2)不考慮墻體長度,問AB的長為多少時,長方形的面積最大?

3)若墻體長度為20米,問長方形面積最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(感知)小亮遇到了這樣一道題:已知如圖在中,上,的延長上,于點,且,求證:.

小亮仔細分析了題中的已知條件后,如圖②過點作,進而解決了該問題.(不需要證明)

(探究)如圖③,在四邊形中,,邊的中點,的延長線交于點,試探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(應(yīng)用)如圖③,在正方形中,邊的中點,分別為,邊上的點,若1,∠90°,則的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx2x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

⑴求拋物線的解析式及頂點D的坐標(biāo);

⑵判斷ABC的形狀,證明你的結(jié)論;

⑶點M(m0)x軸上的一個動點,當(dāng)CM+DM的值最小時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知OA10cmOB5cm,點P從點O開始沿OA邊向點A2cm/s的速度移動;點Q從點B開始沿BO邊向點O1cm/s的速度移動.如果P、Q同時出發(fā),用ts)表示移動的時間(0≤t≤5),

1)用含t的代數(shù)式表示:線段PO   cm;OQ   cm

2)當(dāng)t為何值時,四邊形PABQ的面積為19cm2

3)當(dāng)POQAOB相似時,求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EBC邊一點,DE平分∠ADC,EF∥DCAD邊于點F,連結(jié)BD.

(1)求證:四邊形EFCD是正方形;

(2)若BE=1,ED=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 在平面直角坐標(biāo)系中的位置如圖所示,其中每 個小正方形的邊長為 1 個單位長度.

1)畫出△ABC 關(guān)于原點 O 的中心對稱圖形△A1B1C1,并寫出點 A1 的坐標(biāo);

2)將△ABC 繞點 C 順時針旋轉(zhuǎn) 90°得到△A2B2C,畫出△A2B2C,求在旋轉(zhuǎn)過程中,點 A 所經(jīng)過的路徑長

查看答案和解析>>

同步練習(xí)冊答案