【題目】連接正八邊形的三個(gè)頂點(diǎn),得到如圖所示的圖形,下列說(shuō)法錯(cuò)誤的是( )

A. 是等邊三角形

B. 連接,則分別平分

C. 整個(gè)圖形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形

D. 四邊形與四邊形的面積相等

【答案】A

【解析】

由正八邊形的性質(zhì)得出A不正確,B、C、D正確,即可得出結(jié)論.

∵八邊形ABCDEFGH是正八邊形,

AB=CB=AH=GH=GF=EF=DE=CD,AF=CF,AFC=90°-45°=45°,

∴∠FAC=FCA=(180°-45°)=67.5°,

∴△ACF不是等邊三角形,選項(xiàng)A錯(cuò)誤;

∵正八邊形是軸對(duì)稱圖形,直線BF是對(duì)稱軸,

∴連接BF,則BF分別平分∠AFC和∠ABC,

∴選項(xiàng)B、C正確;

∵四邊形AFGH與四邊形CFED的面積相等,

∴選項(xiàng)D正確;

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)(即這些小正方形的頂點(diǎn))上,且它們的坐標(biāo)分別是A2,﹣3),B5,﹣1),C13),結(jié)合所給的平面直角坐標(biāo)系,解答下列問題:

1)請(qǐng)?jiān)谌鐖D坐標(biāo)系中畫出ABC;

2)畫出ABC關(guān)于y軸對(duì)稱的A'B'C',并寫出A'B'C'各頂點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠B90°,∠ACB30°,BC,點(diǎn)D在邊BC上,連接AD,在AD上方作等邊三角形ADE,連接EC

(1)求證:DECE

(2)若點(diǎn)DBC延長(zhǎng)線上,其他條件不變,直接寫出DE,CE之間的數(shù)量關(guān)系(不必證明);

(3)當(dāng)點(diǎn)D從點(diǎn)B出發(fā)沿著線段BC運(yùn)動(dòng)到點(diǎn)C時(shí),求點(diǎn)E的運(yùn)動(dòng)路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,把圓形井蓋卡在角尺角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個(gè)交點(diǎn)對(duì)應(yīng)CD的長(zhǎng)為40cm則可知井蓋的直徑是(

A. 25cm B. 30cm C. 50cm D. 60cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,∠BAC50°∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MAN是一個(gè)鋼架結(jié)構(gòu),在角內(nèi)部最多只能構(gòu)造五根等長(zhǎng)鋼條,則∠ABC的度數(shù)最大為_______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把正方形ABCDRtABE重疊在一起,其中AB=2,BAE=60°,若把RtABE繞直角頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),使斜邊AE恰好經(jīng)過正方形的頂點(diǎn)C,得到RtA′BE′,AEA′B、A′E分別相交于點(diǎn)F,G,那么△ABE與△A′BE′的重疊部分(即四邊形BCGF部分)的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,直角尺的直角頂點(diǎn)上滑動(dòng)時(shí)(點(diǎn),不重合),

一直角邊經(jīng)過點(diǎn),另一直角邊交于點(diǎn),我們知道,結(jié)論成立.

當(dāng)時(shí),求的長(zhǎng);

是否存在這樣的點(diǎn),使的周長(zhǎng)等于周長(zhǎng)的倍?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為,以為直徑的圓軸的負(fù)半軸交于點(diǎn)

(1)求圖象經(jīng)過,,三點(diǎn)的拋物線的解析式;

(2)設(shè)點(diǎn)為所求拋物線的頂點(diǎn),試判斷直線的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案