【題目】信息1:我們已經(jīng)學(xué)完了解分式方程,它的一般步驟為:確定最簡(jiǎn)公分母、化為整式方程、求出整式方程的解、進(jìn)行檢驗(yàn)(第一,代入最簡(jiǎn)公分母驗(yàn)證是否為零,第二代入分式方程的左右兩邊檢驗(yàn)是否相等)、確定分式方程的解.其中代入最簡(jiǎn)公分母驗(yàn)證這一步也就是在驗(yàn)證所有分式在取此值時(shí)是否有意義;

信息2:遇到這種特征的題目,可以兩邊同時(shí)平方得到;

信息3:遇到這種特征的題目,可以將左邊變形,得到,進(jìn)而可以得到.

結(jié)合上述信息解決下面的問題:

問題1:如果.可得:

問題2:解關(guān)于b的方程:.

【答案】,

【解析】

問題1,根據(jù)信息2,方程兩邊同時(shí)平方求得a的值,再進(jìn)行檢驗(yàn)即可得解;

問題2,根據(jù)信息3,方程兩邊同時(shí)平方,再運(yùn)用因式分解法解方程,最后再進(jìn)行檢驗(yàn)即可.

解:?jiǎn)栴}1,

問題2

兩邊同時(shí)平方得:

檢驗(yàn):當(dāng)時(shí),右邊=1,由于

不符合題意(舍去)

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有個(gè)大小、質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字、、、,攪勻后先從中摸出一個(gè)球(不放回),再從余下的個(gè)球中摸出個(gè)球.

(1)用樹狀圖列出所有可能出現(xiàn)的結(jié)果;

(2)次摸出的乒乓球球面上數(shù)字的積為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,軸上,軸上,.

1)求證:;

2)如圖2,若點(diǎn),,現(xiàn)有一個(gè)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿著軸正方向運(yùn)動(dòng),連結(jié),當(dāng)為等腰三角形時(shí),求點(diǎn)的坐標(biāo);

3)如圖3,若,點(diǎn),過,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在直線l上,點(diǎn)B在直線l外,點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)為C,連接AC,過點(diǎn)BBDAC于點(diǎn)D,延長(zhǎng)BDE使BE=AB,連接AE并延長(zhǎng)與BC的延長(zhǎng)線交于點(diǎn)F.

1)補(bǔ)全圖形;

2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);

3)用等式表示線段EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立適當(dāng)?shù)淖鴺?biāo)系,運(yùn)用函數(shù)知識(shí)解決下面的問題:

如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點(diǎn)E到橋下水面的距離EF3米時(shí),水面寬AB6米,一場(chǎng)大雨過后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時(shí)水位上升了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:能夠成為直角三角形三條邊長(zhǎng)的三個(gè)正整數(shù)a,b,c,稱為勾股數(shù).世界上第一次給出勾股數(shù)通解公式的是我國古代數(shù)學(xué)著作《九章算術(shù)》,其勾股數(shù)組公式為: 其中m>n>0,m,n是互質(zhì)的奇數(shù).

應(yīng)用:當(dāng)n=1時(shí),求有一邊長(zhǎng)為5的直角三角形的另外兩條邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在一三象限角平分線上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、Sn,則第4個(gè)正方形的邊長(zhǎng)是__,Sn的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)OEFBCABE,交ACF,過點(diǎn)OODACD,下列四個(gè)結(jié)論:

EF=BE+CF;

②∠BOC=90°+A;

③點(diǎn)OABC各邊的距離相等;

④設(shè)OD=m,AE+AF=n,則

其中正確的結(jié)論是____.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形中,,點(diǎn)點(diǎn)出發(fā),沿折線運(yùn)動(dòng),到點(diǎn)時(shí)停止,已知的面積與點(diǎn)運(yùn)動(dòng)的路程的函數(shù)圖象如圖②所示,則點(diǎn)從開始到停止運(yùn)動(dòng)的總路程為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案