【題目】(1)在正方形ABCD中,G是CD邊上的一個動點(不與C、D重合),以CG為邊在正方形ABCD外作一個正方形CEFG,連結(jié)BG、DE,如圖①.直接寫出線段BG、DE的關(guān)系 ;
(2)將圖①中的正方形CEFG繞點C按順時針方向旋轉(zhuǎn)任意角度,如圖②,試判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論,若不成立,說明理由;
(3)將(1)中的正方形都改為矩形,如圖③,再將矩形CEFG繞點C按順時針方向旋轉(zhuǎn)任意角度,如圖④,若AB=a,BC=b;CE =ka,CG=kb,()試判斷(1)中的結(jié)論是否仍然成立?并說明理由.
【答案】(1)BG=DE, BG⊥DE;(2)BG=DE, BG⊥DE;(3)BG⊥DE成立,BG=DE不成立,理由見解析.
【解析】
(1)由正方形的性質(zhì)得出BC=CD,CE=CG,∠BCD=∠ECG=90°,由SAS證明△BCG≌△DCE,得出BG=DE,∠CBG=∠CDE,延長BG交DE于H,由角的互余關(guān)系和對頂角相等證出∠CDE+∠DGH=90°,由三角形內(nèi)角和定理得出∠DHG=90°即可;
(2)由正方形的性質(zhì)可得BC=CD,CE=CG,∠BCD=∠ECG=90°,然后求出∠BCG=∠DCE,由SAS證明△BCG和△DCE全等,由全等三角形對應(yīng)邊相等可得BG=DE,全等三角形對應(yīng)角相等可得∠CBG=∠CDE,然后求出∠DOH=90°,再根據(jù)垂直的定義證明即可;
(3)根據(jù)矩形的性質(zhì)證明△BCG∽△DCE,得到,根據(jù)相似三角形對應(yīng)角相等可得∠CBG=∠CDE,然后求出∠DOH=90°,再根據(jù)垂直的定義證明即可.
(1)解:BG=DE,BG⊥DE;理由如下:
∵四邊形ABCD是正方形,四邊形CEFG是正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
在△BCG和△DCE中,
,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
延長BG交DE于H,如圖所示:
∵∠CBG+∠BGC=90°,∠DGH=∠BGC,
∴∠CDE+∠DGH=90°,
∴∠DHG=90°,
∴BG⊥DE;
(2)解:成立;理由如下:
∵四邊形ABCD是正方形,四邊形CEFG是正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCG=∠ECG+∠DCG,
即∠BCG=∠DCE,
在△BCG和△DCE中,
,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
∵∠CBG+∠BHC=90°,∠BHC=∠DHO,
∴∠CDE+∠DHO=90°,
在△DHO中,∠DOH=180°(∠CDE+∠DHO)=180°90°=90°,
∴BG⊥DE.
(3)BG⊥DE成立,BG=DE不成立.
結(jié)合圖④說明如下:
∵四邊形ABCD和四邊形CEFG都是矩形,且AB=a,BC=b,CG=kb,CE=ka(a≠b,k>0),
,
∠BCD=∠ECG=90°.
∴∠BCG=∠DCE.
∴△BCG∽△DCE.
∴,∠CBG=∠CDE.
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°.
∴∠DOH=90°.
∴BG⊥DE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c(a≠0)的頂點為C,交x軸于A、B兩點,交y軸于點D.
(1)求拋物線的解析式;并直接寫出點C的坐標.
(2)如圖2,點P為直線BD上方拋物線上一點,作PE⊥BD于點E,AF⊥BD于點F若,請求出點P的坐標.
(3)如圖3,M為線段AB上的一點,過點M作MN∥BD,交線段AD于點N,連接MD,若△DNM∽△BMD,請求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-4,0),對稱軸為直線x=-1,下列結(jié)論:
①abc>0;
②2a-b=0;
③一元二次方程ax2+bx+c=0的解是x1=-4,x2=1;
④當y>0時,-4<x<2.
其中正確的結(jié)論有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,,,,點,分別是邊,上的動點,且,點關(guān)于的對稱點恰好落在的內(nèi)角平分線上,則長為_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,點M,N分別在線段AC,AB上,將△ANM沿直線MN折疊,使點A的對應(yīng)點D恰好落在線段BC上,若△DCM為直角三角形時,則AM的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小方格都是邊長為1個單位長度的正方形,△ABC和△A1B1C1在平面直角坐標系中位置如圖所示.
(1)△ABC與△A1B1C1關(guān)于某條直線m對稱,畫出對稱軸m.
(2)畫出△A1B1C1繞原點O順時針旋轉(zhuǎn)90°所得的△A2B2C2.此時點A2的坐標為________;
求出點A1旋轉(zhuǎn)到點A2的路徑長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD,一等腰直角三角板的一個銳角頂點與A重合,將此三角板繞A點旋轉(zhuǎn)時,兩邊分別交直線BC、CD于M、N.
(1)當M、N分別在邊BC、CD上時(如圖1),求證:BM+DN=MN;
(2)當M、N分別在邊BC、CD所在的直線上時(如圖2,圖3),線段BM、DN、MN之間又有怎樣的數(shù)量關(guān)系,請直接寫出結(jié)論;
(3)在圖3中,作直線BD交直線AM、AN于P、Q兩點,若MN=10,CM=8,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,從而對任意正整數(shù)n,我們可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值為( )
A.0B.1C.﹣1D.i
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com