【題目】如圖,兩個觀察者從A,B兩地觀測空中C處一個氣球,分別測得仰角為45°和60°.已知A,B兩地相距100 m.當氣球沿與AB平行的路線飄移20 s后到達點C′,在A處測得氣球的仰角為30°.求:
(1)氣球飄移的平均速度(精確到0.1 m/s);
(2)在B處觀測點C′的仰角(精確到度).
【答案】(1)氣球飄移的平均速度為8.7 m/s;(2)在B處觀測點C′的仰角為37°.
【解析】試題首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個直角三角形,應利用其公共邊構(gòu)造等量關(guān)系,進而可求出答案.
試題解析:解:(1)作CD⊥AB,C1E⊥AB,垂足分別為D、E.在Rt△ACD中,AD=CD÷tan∠CAD=CD÷tan45°=CD;在Rt△BCD中,BD=CD÷tan∠CBD=CD÷tan60°=;
又因為AB=AD﹣BD=200,所以CD﹣=200,解得:CD=100(3),又CD⊥AB,C1E⊥AB,CC1∥AB,所以C1E=CD,DE=CC1.在Rt△AEC1中,AE=C1E÷tan∠C1AE=100(3+)÷tan30°=300(),所以CC1=DE=AE﹣AD=300()﹣100(3+),即CC1=200,速度為200÷40≈8.66m/s;
(2)由(1)知BD==100(1),所以tan∠C1BE==≈0.7637,所以∠C1BE=37°,即仰角為37°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平形四邊形ABCD中,對角線AC,BD交點O,E是BD延長線上的點,且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若∠AED=2∠EAD,AB=2,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,點在邊上,且將沿對折至,延長交邊于點連結(jié)下列結(jié)論:①②③④
其中正確結(jié)論的個數(shù)是 ( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知表內(nèi)的各橫行中,從第二個數(shù)起的數(shù)都比它左邊相鄰的數(shù)大m;各豎列中,從第二個數(shù)起的數(shù)都比它上邊相鄰的數(shù)大n.求m,n以及表中x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ,EM平分,并與CD邊交于點M.DN平分,
并與EM交于點N.
(1)依題意補全圖形,并猜想的度數(shù)等于 ;
(2)證明以上結(jié)論.
證明:∵ DN平分,EM平分,
∴,
= .
(理由: )
∵,
∴= ×(∠ +∠ )= ×90°= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC與BD平行嗎?AE與BF平行嗎?
因為∠1=35°,∠2=35°(已知),所以∠1=∠2.所以___∥___( ).
又因為AC⊥AE(已知),所以∠EAC=90°( )
所以∠EAB=∠EAC+∠1=125°.
同理可得,∠FBG=∠FBD+∠2=__ °.
所以∠EAB=∠FBG( ).
所以___∥___(同位角相等,兩直線平行).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提倡節(jié)約用水,我縣自來水公司每月只給某單位計劃內(nèi)用水200噸,計劃內(nèi)用水每噸收費2.4元,超計劃部分每噸按3.6元收費.
⑴用代數(shù)式表示下列問題(最后結(jié)果需化簡 ):設(shè)用水量為噸,當用水量小于等于200噸時,需付款多少元?當用水量大于200噸時,需付款多少元?
⑵若某單位4月份繳納水費840元,則該單位用水量多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀第①小題的計算方法,再計算第②小題.
①–5+(–9)+17+(–3)
解:原式=[(–5)+(–)]+[(–9)+(–)]+(17+)+[(–3+(–)]
=[(–5)+(–9)+(–3)+17]+[(–)+(–)+(–)+]
=0+(–1)
=–1.
上述這種方法叫做拆項法.靈活運用加法的交換律、結(jié)合律可使運算簡便.
②仿照上面的方法計算:(﹣2000)+(﹣1999)+4000+(﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com