【題目】如圖,已知BD為△ABC的角平分線請按如下要求操作與解答:
(1)過點D畫DE∥BC交AB于點E.若∠A=68°,∠AED=42°,求△BCD各內(nèi)角的度數(shù);
(2)畫△ABC的角平分線CF交BD于點M,若∠A=60°,請找出圖中所有與∠A相等的角,并說明理由.
【答案】(1) ∠DBC =21°,∠C =70°,∠BDC =89°;(2) ∠A=∠BMF=∠CMD=60°.
【解析】
(1)由DE∥BC可知∠AED=∠ABC=42°,根據(jù)角平分線的定義可得∠DBC=∠ABC=21°,根據(jù)三角形的內(nèi)角和定理求得∠C和∠BDC的度數(shù)即可;(2)因為∠A=60°,根據(jù)三角形的內(nèi)角和定理可得∠ABC+∠ACB=120°,由于BD平分∠ABC,CF平分∠ACB,可得∠MBC+∠MCB=60°,所以∠BMC=120°,由鄰補角的定義可得∠BMF=∠CMD=60°.
解:(1)過點D作DE∥BC交AB于點E,
∵DE∥BC,
∴∠AED=∠ABC=42°,
∵BD平分∠ABC,
∴∠DBC=∠ABC=21°,
∴∠C=180°-∠ABC-∠A=70°,
∴∠BDC=180°-∠DBC-∠C=89°.
(2)作△ABC的角平分線CF交BD于點M,
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∴BD平分∠ABC,CF平分∠ACB,
∴∠MBC+∠MCB=(∠ABC+∠ACB)=60°,
∴∠BMC=120°,
∴∠BMF=∠CMD=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于點D.點P從點A出發(fā),沿A→C方向以 cm/s的速度運動到點C停止.在運動過程中,過點P作PQ∥AB交BC于點Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點M,C位于PQ異側(cè)).設(shè)點P的運動時間為x(s),△PQM與△ADC重疊部分的面積為y(cm2)
(1)當點M落在AB上時,求x的值;
(2)當點M落在AD上時,PM與CD之間的數(shù)量關(guān)系是 , 此時x的值是;
(3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA的方向是北偏東20,射線OB的方向是北偏西40,OD是OB的反向延長線,OC是∠AOD的平分線。
(1)求∠BOC的度數(shù);
(2)求出射線OC的方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAP+∠APD=180°,∠AOE=∠1,∠FOP=∠2.
(1)若∠1=55°,求∠2的度數(shù);
(2)求證:AE∥FP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B的坐標分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=(x﹣h)2+3,當1≤x≤3時,函數(shù)有最小值2h,則h的值為( )
A.
B. 或2
C. 或6
D.2、 或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP為∠AOB的平分線,PC⊥OA,PD⊥OB,垂足分別是C,D,E為OP上一點,則下列結(jié)論錯誤的是( )
A. CE=DEB. ∠CPO=∠DEPC. ∠CEO=∠DEOD. OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一點,連接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,則AC長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com