【題目】勾股定理是幾何中的一個(gè)重要定理.在我國(guó)古算書(shū)《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點(diǎn)D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為( )

A.90
B.100
C.110
D.121

【答案】C
【解析】解:如圖,延長(zhǎng)AB交KF于點(diǎn)O,延長(zhǎng)AC交GM于點(diǎn)P,
所以四邊形AOLP是正方形,
邊長(zhǎng)AO=AB+AC=3+4=7,
所以KL=3+7=10,LM=4+7=11,
因此矩形KLMJ的面積為10×11=110.
故選:C.

延長(zhǎng)AB交KF于點(diǎn)O,延長(zhǎng)AC交GM于點(diǎn)P,可得四邊形AOLP是正方形,然后求出正方形的邊長(zhǎng),再求出矩形KLMJ的長(zhǎng)與寬,然后根據(jù)矩形的面積公式列式計(jì)算即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖點(diǎn)P是射線BM上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),∠AOB= 30°,∠ABM=60°.當(dāng)∠OAP=______時(shí),以點(diǎn)A、O、B中的任意兩點(diǎn)和點(diǎn)P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在CBD中,CD=BD,CDBD,BE平分CBA交CD于點(diǎn)F,CEBE垂足是E,CE與BD交于點(diǎn)A.求證:

(1)BF=AC;

(2)BE是AC的中垂線;

(3)若AD=2,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是老年活動(dòng)中心門(mén)口放著的一個(gè)招牌,這個(gè)招牌是由三個(gè)特大號(hào)的骰子摞在一起而成的.每個(gè)骰子的六個(gè)面的點(diǎn)數(shù)分別是1到6,其中可以看見(jiàn)7個(gè)面,其余11個(gè)面是看不見(jiàn)的,則看不見(jiàn)的面上的點(diǎn)數(shù)總和是( )

A.41
B.40
C.39
D.38

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=(2m+3x+m-1

1)若函數(shù)圖象經(jīng)過(guò)原點(diǎn),求m的值;

2)若函數(shù)圖象與y軸上的的交點(diǎn)位于原點(diǎn)上方,求m的取值范圍;

3)若函數(shù)圖象平行于直線y=x+1,求m的值;

4)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以點(diǎn)A為頂點(diǎn)作等腰RtABC,等腰RtADE,其中BAC=DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE

1)試判斷BDCE的數(shù)量關(guān)系,并說(shuō)明理由;

2)延長(zhǎng)BDCE于點(diǎn)F試求BFC的度數(shù);

3)把兩個(gè)等腰直角三角形按如圖2放置,(1)、(2)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=15,AC=20,BC邊上高AD=12,則BC的長(zhǎng)為(

A. 25 B. 7 C. 25或7 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝六一兒童節(jié),某市中小學(xué)統(tǒng)一組織文藝匯演,甲、乙兩所學(xué)校共92人(其中甲校的人數(shù)多于乙校的人數(shù),且甲校的人數(shù)不足90人)準(zhǔn)備統(tǒng)一購(gòu)買(mǎi)服裝參加演出;下面是某服裝廠給出的演出服裝的價(jià)格表

購(gòu)買(mǎi)服裝的套數(shù)

1套至45

46套至90

91套以上

每套服裝的價(jià)格

60

50

40

(1)如果兩所學(xué)校分別單獨(dú)購(gòu)買(mǎi)服裝一共應(yīng)付5000元,甲、乙兩所學(xué)校各有多少學(xué)生準(zhǔn)備參加演出

(2)如果甲校有10名同學(xué)抽調(diào)去參加書(shū)法繪畫(huà)比賽不能參加演出,請(qǐng)你為兩所學(xué)校設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)服裝方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步建設(shè)秀美、宜居的生態(tài)環(huán)境,某村欲購(gòu)買(mǎi)甲、乙、丙三種樹(shù)美化村莊,已知甲、乙丙三種樹(shù)的價(jià)格之比為2:2:3,甲種樹(shù)每棵200元,現(xiàn)計(jì)劃用210000元資金,購(gòu)買(mǎi)這三種樹(shù)共1000棵.
(1)求乙、丙兩種樹(shù)每棵各多少元?
(2)若購(gòu)買(mǎi)甲種樹(shù)的棵樹(shù)是乙種樹(shù)的2倍,恰好用完計(jì)劃資金,求這三種樹(shù)各能購(gòu)買(mǎi)多少棵?
(3)若又增加了10120元的購(gòu)樹(shù)款,在購(gòu)買(mǎi)總棵樹(shù)不變的前提下,求丙種樹(shù)最多可以購(gòu)買(mǎi)多少棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案