【題目】-278-3+(-6)+278=( )
A.0
B.6
C.3
D.-9
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當∠ABC=45°時,求證:AD=DE;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習了圖形的旋轉(zhuǎn)知識后,數(shù)學興趣小組的同學們又進一步對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF= 度,線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖3,當?shù)cE、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
(二)拓展延伸
如圖4,在等邊△ABC中,E、F是邊BC上的兩點,∠EAF=30°,BE=1,將△ABE繞點A逆時針旋轉(zhuǎn)60°得到△A′B′E′(A′B′與AC重合),連接EE′,AF與EE′交于點N,過點A作AM⊥BC于點M,連接MN,求線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1在上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】與 在平面直角坐標系中的位置如圖.
(1)分別寫出下列各點的坐標:
; ; ;
(2)說明 由 經(jīng)過怎樣的平移得到:
.
(3)若點 ( , )是 內(nèi)部一點,則平移后 內(nèi)的
對應(yīng)點 的坐標為;
(4)求 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,l是四邊形ABCD的對稱軸,AD∥BC,現(xiàn)給出下列結(jié)論: ①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為支援災(zāi)區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品共1000件.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品的件數(shù)與用120元購買A型學習用品的件數(shù)相同.
(1)求A、B兩種學習用品的單價各是多少元?
(2)若購買這批學習用品的費用不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com