【題目】如圖1,已知拋物線過點(diǎn)

1)求拋物線的解析式及其頂點(diǎn)C的坐標(biāo);

2)設(shè)點(diǎn)Dx軸上一點(diǎn),當(dāng)時(shí),求點(diǎn)D的坐標(biāo);

3)如圖2.拋物線與y軸交于點(diǎn)E,點(diǎn)P是該拋物線上位于第二象限的點(diǎn),線段PABE于點(diǎn)M,交y軸于點(diǎn)N,的面積分別為,求的最大值.

【答案】1,頂點(diǎn)C的坐標(biāo)為-(-1,4);(2;(3的最大值為.

【解析】

1)利用待定系數(shù)法,將A,B的坐標(biāo)代入即可求得二次函數(shù)的解析式;

2)設(shè)拋物線對稱軸與x軸交于點(diǎn)H,在中,可求得,推出,可證,利用相似三角形的性質(zhì)可求出AD的長度,進(jìn)一步可求出點(diǎn)D的坐標(biāo),由對稱性可直接求出另一種情況;

3)設(shè)代入,求出直線PA的解析式,求出點(diǎn)N的坐標(biāo),由,可推出,再用含a的代數(shù)式表示出來,最終可用函數(shù)的思想來求出其最大值.

解:(1)由題意把點(diǎn)代入

得,,

解得

∴此拋物線解析式為:,頂點(diǎn)C的坐標(biāo)為

2)∵拋物線頂點(diǎn),

∴拋物線對稱軸為直線,

設(shè)拋物線對稱軸與x軸交于點(diǎn)H,

中,

,

∴當(dāng)時(shí),

如圖1,當(dāng)點(diǎn)D在對稱軸左側(cè)時(shí),

,

,

,

,

當(dāng)點(diǎn)D在對稱軸右側(cè)時(shí),點(diǎn)D關(guān)于直線的對稱點(diǎn)D'的坐標(biāo)為,

∴點(diǎn)D的坐標(biāo)為;

3)設(shè),

代入,

得,

解得,

當(dāng)時(shí),,

如圖2

,

由二次函數(shù)的性質(zhì)知,當(dāng)時(shí),有最大值,

的面積分別為mn,

的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c的圖象與x軸交于A(4,0)和點(diǎn)B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸是x=1x軸交于點(diǎn)D

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)P(m,n)為拋物線上一點(diǎn),且﹣4m<﹣1,過點(diǎn)PPEx軸,交拋物線的對稱軸x=1于點(diǎn)E,作PFx軸于點(diǎn)F,得到矩形PEDF,求矩形PEDF周長的最大值;

3)點(diǎn)Q為拋物線對稱軸x=1上一點(diǎn),是否存在點(diǎn)Q,使以點(diǎn)QB,C為頂點(diǎn)的三角形是直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,、分別為軸、軸正半軸上的點(diǎn),以、為邊,在一象限內(nèi)作矩形,且.將矩形翻折,使點(diǎn)與原點(diǎn)重合,折痕為,點(diǎn)的對應(yīng)點(diǎn)落在第四象限,過點(diǎn)的反比例函數(shù),其圖象恰好過的中點(diǎn),則點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及率越來越高以及移動支付的快捷高效性,中國移動支付在世界處于領(lǐng)先水平.為了解人們平時(shí)最喜歡用哪種移動支付方式,因此在某步行街對行人進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查結(jié)果分別整理的不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

移動支付方式

支付寶

微信

其他

人數(shù)/

   

200

75

請你根據(jù)上述統(tǒng)計(jì)表和統(tǒng)計(jì)圖提供的信息.完成下列問題:

1)在此次調(diào)查中,使用支付寶支付的人數(shù);

2)求表示微信支付的扇形所對的圓心角度數(shù);

3)某天該步行街人流量為10萬人,其中30%的人購物并選擇移動支付,請你依據(jù)此次調(diào)查獲得的信息估計(jì)一下當(dāng)天使用微信支付的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y4x與雙曲線y交于AB兩點(diǎn),過B作直線BCy軸,垂足為C,則以OA為直徑的圓與直線BC的交點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與直線都經(jīng)過點(diǎn)

1)求反比例函數(shù)和直線的解析式.

2)將一次函數(shù)的圖象沿軸向下平移個單位長度,使平移后的圖象與反比例函數(shù)的圖象有且只有一個交點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy 中,菱形 ABOC 的頂點(diǎn) O 在坐標(biāo)原點(diǎn),邊 BOx 軸的負(fù)半軸上,頂點(diǎn) C的坐標(biāo)為(﹣3,4),反比例函數(shù) y 的圖象與菱形對角線 AO 交于 D 點(diǎn),連接 BD,當(dāng) BDx 軸時(shí),k的值是( )

A.B.C.12D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)都是實(shí)數(shù),且.我們規(guī)定:滿足不等式的實(shí)數(shù)的所有值的全體叫做閉區(qū)間、表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時(shí),有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.

(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式;

(3)若實(shí)數(shù)滿足.且,當(dāng)二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解全校學(xué)生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.

請根據(jù)以上信息,解答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖中,“體育”對應(yīng)的圓心角的度數(shù)是?

3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂節(jié)目的有多少人?

查看答案和解析>>

同步練習(xí)冊答案