【題目】求證:全等三角形的對(duì)應(yīng)角平分線相等。
(1)畫出適合題意的圖形,并結(jié)合圖形寫出已知和求證。
(2)給出證明。
【答案】(1)見詳解;(2)見詳解.
【解析】
作出圖形,結(jié)合圖形寫出已知、求證,根據(jù)全等三角形對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等,AB=A'B',∠B=∠B',∠BAC=∠B'A'C',又AD、A'D'是∠BAC和∠B'A'C'的平分線,所以∠BAD=∠B'A'D',根據(jù)角邊角判定定理可得△ABD和△A'B'D'全等,所以角平分線AD、A'D'相等.
已知:如圖,△ABC≌△A'B'C',AD、A'D'是∠BAC和∠B'A'C'的平分線.
求證:AD=A'D'.
證明:∵△ABC≌△A'B'C',∴∠B=∠B',AB=A'B',∠BAC=∠B'A'C'.
∵AD平分∠BAC,A'D'平分∠B'A'C',∴∠BAD=∠BAC,∠B'A'D'=∠B'A'C',∴∠BAD=∠B'A'D',∴△ABD≌△A'B'D',∴AD=A'D'.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個(gè)盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球;乙盒中裝有三個(gè)球,分別為兩個(gè)綠球和一個(gè)紅球;丙盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球,從三個(gè)盒子中各隨機(jī)取出一個(gè)小球
(1)請(qǐng)畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果
(2)請(qǐng)直接寫出事件“取出至少一個(gè)紅球”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·貴港)如圖所示,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)
為(-1,1),點(diǎn)C的坐標(biāo)為(-4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是 _ ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點(diǎn)D,點(diǎn)E為AC中點(diǎn)且BE平分∠ABD,連接BE交AD于點(diǎn)F,且BF=AC,過點(diǎn)D作DG∥AB,交AC于點(diǎn)G.
求證:
(1)∠BAD=2∠DAC
(2)EF=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,將點(diǎn)翻折到對(duì)角線上的點(diǎn)處,折痕交于點(diǎn).將點(diǎn)翻折到對(duì)角線上的點(diǎn)處,折痕交于點(diǎn).
求證:四邊形為平行四邊形;
若四邊形為菱形,且,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 中,∠ABC=90°,AB=BC= ,三角形的頂點(diǎn)在相互平行的三條直線l1、l2、l3 上,且 l2、l3之間的距離為 2,則 l1、l2 之間的距離為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,為等邊三角形,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與、重合).以為邊作菱形,使,連接.
如圖,當(dāng)點(diǎn)在邊上時(shí),
①求證:;②請(qǐng)直接判斷結(jié)論是否成立;
如圖,當(dāng)點(diǎn)在邊的延長線上時(shí),其他條件不變,結(jié)論是否成立?請(qǐng)寫出、、之間存在的數(shù)量關(guān)系,并寫出證明過程;
如圖,當(dāng)點(diǎn)在邊的延長線上時(shí),且點(diǎn)、分別在直線的異側(cè),其他條件不變,請(qǐng)補(bǔ)全圖形,并直接寫出、、之間存在的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BA=BC,BD是三角形的角平分線,DE∥BC交AB于E,下列結(jié)論:①∠1=∠3;②;③。正確的有__________。(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線BC:,直線BD與x軸交于點(diǎn)A,點(diǎn)B(2,3),點(diǎn)D(0,).
(1)求直線BD的函數(shù)解析式;
(2)在y軸上找一點(diǎn)P,使得△ABC與△ACP的面積相等,求出點(diǎn)P的坐標(biāo);
(3)如圖2,E為線段AC上一點(diǎn),連結(jié)BE,一動(dòng)點(diǎn)F從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位運(yùn)動(dòng)到點(diǎn)E再沿線段EA以每秒個(gè)單位運(yùn)動(dòng)到A后停止,設(shè)點(diǎn)F在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間為t,求t的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com