【題目】已知關(guān)于x的方程x2mx3x+m40(m為常數(shù))

(1)求證:方程有兩個不相等的實數(shù)根.

(2)設(shè)x1,x2是方程的兩個實數(shù)根,且x1+x24,請求出方程的這兩個實數(shù)根.

【答案】(1)證明見解析;(2)x12+,x22.

【解析】

(1)求出△=(m3)24×1×(m4)m2+2m+25(m+1)2+240,即可得出結(jié)論;

(2)x1+x2m+3,得出m+34,解得m1,則原方程為x24x30,解方程即可得出結(jié)果.

(1)證明:∵x2mx3x+m40,即:x2(m+3)x+m40,

∴△=(m3)24×1×(m4)m2+2m+25(m+1)2+240

∴關(guān)于x的方程x2mx3x+m40有兩個不相等的實數(shù)根;

(2)解:∵x1x2是方程的兩個實數(shù)根,

x1+x2m+3,

x1+x24,

m+34,

m1

∴原方程為:x24x30,

解得:x12+x22,

∴方程的這兩個實數(shù)根為:x12+x22.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx的圖象過點A(4,0),設(shè)點C(1-3),在拋物線的對稱軸上求一點P,使|PA-PC|的值最大,則點P的坐標為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度;

(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結(jié)果精確到0.1米,參考數(shù)據(jù):1.41,1.73,2.24,2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】華為手機與蘋果手機受消費者喜愛,某商戶每周都用25000元購進250張華為手機殼和150張?zhí)O果手機殼.

1)商戶在第一周銷售時,每張華為手機殼的售價比每張?zhí)O果手機殼的售價的2倍少10元,且兩種手機殼在一周之內(nèi)全部售完,總盈利為5000元,商戶銷售蘋果手機殼的價格每張多少元?

2)商戶在第二周銷售時,受到各種因素的影響,每張華為手機殼的售價比第一周每張華為手機殼的售價增加,但華為手機殼的銷售量比第一周華為手機殼的銷售量下降了a%;每張?zhí)O果手機殼的售價比第一周每張?zhí)O果手機殼的售價下降了a%,但蘋果手機殼銷售量與第一周蘋果手機殼銷售量相同,結(jié)果第二周的總銷售額為30000元,求a)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象經(jīng)過A0,﹣2),B(﹣1,0)兩點,與反比例函數(shù)與反比例函數(shù)y的圖象在第一象限內(nèi)的交點為Mm4).

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)求AOM的面積;

3)在x軸上是否存在點P,使AMMP?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長為2,現(xiàn)將它沿AB方向平移1個單位,得到正六邊形A′B′C′D′E′F′,則陰影部分A′BCDE′F′的面積是(  )

A.3B.4C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A3,4),B5,0),連結(jié)AO,AB.點C是線段AO上的動點(不與AO重合),連結(jié)BC,以BC為直徑作⊙H,交x軸于點D,交AB于點E,連結(jié)CD,CE,過EEFx軸于F,交BCG

1AO的長為   ,AB的長為   (直接寫出答案)

2)求證:ACE∽△BEF

3)若圓心H落在EF上,求BC的長;

4)若CEG是以CG為腰的等腰三角形,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰三角形ABC中,∠ABC90°DAC邊上中點,過D點作DEDF,交ABE,交BCF,若AE4,FC3,則EF的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的內(nèi)切圓⊙OAB、BC、AC分別相切于D、EF,若,如圖1.

1)判斷的形狀,并證明你的結(jié)論;

2)連接AE,若,求AE的長.

查看答案和解析>>

同步練習冊答案