如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過(guò)邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).
分析:(1)過(guò)點(diǎn)C作CG⊥OA于點(diǎn)G,根據(jù)等邊三角形的性質(zhì)求出OG、CG的長(zhǎng)度,從而得到點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求反比例函數(shù)解析式列式計(jì)算即可得解; (2)過(guò)點(diǎn)D作DH⊥AF于點(diǎn)H,設(shè)AH=a,根據(jù)等邊三角形的性質(zhì)表示出DH的長(zhǎng)度,然后表示出點(diǎn)D的坐標(biāo),再把點(diǎn)D的坐標(biāo)代入反比例函數(shù)解析式,解方程得到a的值,從而得解. 解答:解:(1)過(guò)點(diǎn)C作CG⊥OA于點(diǎn)G, ∵點(diǎn)C是等邊△OAB的邊OB的中點(diǎn), ∴OC=2,∠AOB=60°, ∴OG=1,CG=, ∴點(diǎn)C的坐標(biāo)是(1,), 由=,得:k=, ∴該雙曲線所表示的函數(shù)解析式為y=; (2)過(guò)點(diǎn)D作DH⊥AF于點(diǎn)H,設(shè)AH=a,則DH=a. ∴點(diǎn)D的坐標(biāo)為(4+a,), ∵點(diǎn)D是雙曲線y=上的點(diǎn), 由xy=,得(4+a)=, 即:a2+4a-1=0, 解得:a1=-2,a2=--2(舍去), ∴AD=2AH=2-4, ∴等邊△AEF的邊長(zhǎng)是2AD=4-8. 點(diǎn)評(píng):本題是對(duì)反比例函數(shù)的綜合考查,包括待定系數(shù)法求反比例函數(shù)解析式,等邊三角形的性質(zhì),解一元二次方程,難度不大,作出輔助線,表示出點(diǎn)C、D的坐標(biāo)是解題的關(guān)鍵. |
反比例函數(shù)綜合題. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y= (k>0)經(jīng)過(guò)邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省杭州市蕭山區(qū)瓜瀝一中九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙教版九年級(jí)(上)第一次月考數(shù)學(xué)試卷(六)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年四川省瀘州市藍(lán)田中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com