【題目】如圖,在菱形ABCD中,∠=∠EAF,∠BAE,則∠CEF________

【答案】20°

【解析】

首先證明△ABE≌△ACF,然后推出AE=AF,證明△AEF是等邊三角形,得∠AEF=60°,最后求出∠CEF的度數(shù).

解:連接AC 在菱形ABCD中,AB=CB, =60°,

∴∠BAC=60°,△ABC是等邊三角形,

∵∠EAF=60°, ∴∠BAC-EAC=EAF-EAC,

即:∠BAE=CAF

在△ABE和△ACF中,

∴△ABE≌△ACFASA),

AE=AF, 又∠EAF=D=60°,

則△AEF是等邊三角形, ∴∠AEF=60°,

又∠AEC=B+BAE=80°

則∠CEF=80°-60°=20°

故答案為:20°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,某商場搞優(yōu)惠促銷,決定由顧客抽獎確定折扣.某顧客購買甲、乙兩種商品,分別抽到七折(按售價的70%銷售)和九折(按售價的90%銷售),共付款386元,這兩種商品原銷售價之和為500元.問:這兩種商品的原銷售價分別為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點平分.

1)若,求的度數(shù);(2)若,求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有若干個僅顏色不同的紅球和黑球,現(xiàn)往一個不透明的袋子里裝進4個紅球和6個黑球.

1)若先從袋子里取出m個紅球(不放回),再從袋子里隨機摸出一個球,將摸到黑球記為事件A. 若事件A為必然事件,則m= .

2)若先從袋子里取出n個黑球,再放入2n個紅球,若隨機摸出一個球是紅球的概率等于2/3,通過計算求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為開展全科大閱讀活動,學;ㄙM了3400元在書店購買了40套古典文學書籍和20套現(xiàn)代文學書籍,每套現(xiàn)代文學書籍比每套古典文學書籍多花20.

1)求每套古典文學習書籍和現(xiàn)代文學書籍分別是多少元?

2)為滿足學生的閱讀需求,學校計劃用不超過2500元再次購買古典文學和現(xiàn)代文學書籍共40套,經(jīng)市場調查得知,每套古典文學書籍價格上浮了20%,每套現(xiàn)代文學書籍價格下調了10%,學校最多能購買多少套現(xiàn)代文學書籍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,于點,平分于點,交于點,于點,連接

1)如圖1,求證:四邊形是菱形;

2)如圖2,若的中點,過點于點,在不添加任何輔助線的情況下,請直接寫出圖2中是倍的所有線段.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DHAB于點H,連接OH,∠CAD=35°,則∠HOB的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個半徑相等的直角扇形的圓心分別在對方的圓弧上,半徑AE、CF交于點G,半徑BE、CD交于點H.且點C是的中點,若扇形的半徑為3.則圖中陰影部分的面積等于______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣特色早餐種類繁多,色香味美,著名的種類有干挑面鍋貼、青團子” “粢米飯等.一數(shù)學興趣小組在全校范圍內隨機抽取了一些同學進行我最喜愛的特色早餐調查活動,每位同學選擇一種自己最喜歡的早餐種類,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:

1)請將條形統(tǒng)計圖補充完整.

2)在扇形統(tǒng)計圖中,表示粢米飯對應的扇形的圓心角是多少度?

3)該校共有1200名學生,請你估計該校學生中最喜愛青團子的學生有多少人?

查看答案和解析>>

同步練習冊答案