【題目】如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠1∠2,∠3∠4,則∠A∠F,請說明理由.

解:∵∠1∠2(已知)

∠2∠DGF( )

∴∠1∠DGF

∴BD∥CE( )

∴∠3∠C180( )

∵∠3∠4(已知)

∴∠4∠C180

(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠A∠F( )

【答案】對頂角相等;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);AC,DF;兩直線平行,內(nèi)錯(cuò)角相等.

【解析】試題分析:根據(jù)平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系,分別分析得出即可.

試題解析:∵∠1=∠2(已知)

∠2=∠DGF(對頂角相等),

∴∠1=∠DGF,

∴BD∥CE,(同位角相等,兩直線平行),

∴∠3+∠C=180°,(兩直線平行,同旁內(nèi)角互補(bǔ)),

∵∠3=∠4(已知)

∴∠4+∠C=180°

∴DF∥AC(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠A=∠F(兩直線平行,內(nèi)錯(cuò)角相等).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:如圖所示,在正方形ABCD和BEFG中,點(diǎn)A,B,E在同一直線上,P是線段DF中點(diǎn),連接PG,PC.

探究:當(dāng)PG與PC的夾角為90°時(shí),平行四邊形BEFG是正方形.

小聰同學(xué)的思路是:首先可以證明四邊形BEFG是矩形,然后延長GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題答案.

請你參考小聰同學(xué)的思路,探究并解決這個(gè)問題.

(1)求證:四邊形BEFG是矩形;

(2)求證:PG與PC的夾角為90°時(shí),四邊形BEFG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關(guān)系,并說明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若A=4x2﹣3x﹣2,B=4x2﹣3x﹣4,則A,B的大小關(guān)系是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A=4x2﹣4xy+y2,B=x2+xy﹣5y2

求:(1) 3A﹣2B; (2) 2A+B;(3)(3A﹣2B)﹣(2A+B)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由地理知識可知:各地的氣溫受海拔高度的影響,海拔每升高100米,氣溫就下降0.6℃,現(xiàn)已知重慶的海拔高度約為260米,峨眉山的海拔高度約為3099米,則當(dāng)重慶氣溫為28℃時(shí),峨眉山山頂?shù)臍鉁貫槎嗌?(精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y﹦(m+1)x+m2﹣1是正比例函數(shù),則m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,2)向右平移3個(gè)單位長度得到的點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的兩邊分別在軸、軸的正半軸上,反比例函數(shù)>0)與相交于點(diǎn),與相交于點(diǎn),若,且的面積是5,則的值為_______

查看答案和解析>>

同步練習(xí)冊答案