【題目】如圖,小明在研究性學習活動中,對自己家所在的小區(qū)進行調(diào)查后發(fā)現(xiàn),小區(qū)汽車入口寬AB為3.2m,在入口的一側(cè)安裝了停止桿CD,其中AE為支架.當停止桿仰起并與地面成60°角時,停止桿的端點C恰好與地面接觸.此時CA為0.7m.在此狀態(tài)下,若一輛貨車高3m,寬2.5m,入口兩側(cè)不能通車,那么這輛貨車在不碰桿的情況下,能從入口內(nèi)通過嗎?請你通過估算說明.(參考數(shù)據(jù): ≈1.7)

【答案】解:如圖,
在AB之間找一點F,使BF=2.5m,過點F作GF⊥AB交CD于點G,
∵AB=3.2m,CA=0.7m,BF=2.5m,
∴CF=AB﹣BF+CA=1.4m,
∵∠ECA=60°,
∴tan60°= ,
∴GF=CAtan60°=1.4 ≈2.38m,
∵2.38<3
∴這輛貨車在不碰桿的情況下,不能從入口內(nèi)通過
【解析】首先在AB之間找一點F,且BF=2.5,過點F作GF⊥AB交CD于點G,只要求得GF的數(shù)值,進一步與貨車高相比較得出答案即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1 , x2 , 其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過點A(﹣1,4),直線y=﹣x+b(b≠0)與雙曲線y= 在第二、四象限分別相交于P,Q兩點,與x軸、y軸分別相交于C,D兩點.
(1)求k的值;
(2)當b=﹣2時,求△OCD的面積;
(3)連接OQ,是否存在實數(shù)b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=15,AC=20,BC邊上高AD=12,則BC的長為(

A. 25 B. 7 C. 25或7 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為E.
(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形中,對角線、相交于點,下列條件不能判定這個四邊形是平行四邊形的是( 。

A. ABDC,ADBC B. AO=CO,BO=DO

C. ABDC,AD=BC D. AB=DC,AD=BC

查看答案和解析>>

同步練習冊答案