【題目】如圖1,在△ABC中,設(shè)∠A、∠B、∠C的對(duì)邊分別為a,b,c,過(guò)點(diǎn)A作AD⊥BC,垂足為D,會(huì)有sin∠C= ,則
S△ABC= BC×AD= ×BC×ACsin∠C= absin∠C,
即S△ABC= absin∠C
同理S△ABC= bcsin∠A
S△ABC= acsin∠B
通過(guò)推理還可以得到另一個(gè)表達(dá)三角形邊角關(guān)系的定理﹣余弦定理:
如圖2,在△ABC中,若∠A、∠B、∠C的對(duì)邊分別為a,b,c,則
a2=b2+c2﹣2bccos∠A
b2=a2+c2﹣2accos∠B
c2=a2+b2﹣2abcos∠C
用上面的三角形面積公式和余弦定理解決問(wèn)題:
(1)如圖3,在△DEF中,∠F=60°,∠D、∠E的對(duì)邊分別是3和8.求S△DEF和DE2 .
解:S△DEF= EF×DFsin∠F=;
DE2=EF2+DF2﹣2EF×DFcos∠F= .
(2)如圖4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分別是以AB、BC、AC為邊長(zhǎng)的等邊三角形,設(shè)△ABC、△ABC'、△BCA'、△ACB'的面積分別為S1、S2、S3、S4 , 求證:S1+S2=S3+S4 .
【答案】
(1)6 ;49
(2)
證明:方法1,∵∠ACB=60°,
∴AB2=AC2+BC2﹣2ACBCcos60°=AC2+BC2﹣ACBC,
兩邊同時(shí)乘以 sin60°得, AB2sin60°= AC2sin60°+ BC2sin60°﹣ ACBCsin60°,
∵△ABC',△BCA',△ACB'是等邊三角形,
∴S1= ACBCsin60°,S2= AB2sin60°,S3= BC2sin60°,S4= AC2sin60°,
∴S2=S4+S3﹣S1,
∴S1+S2=S3+S4,
方法2、令∠A,∠B,∠C的對(duì)邊分別為a,b,c,
∴S1= absin∠C= absin60°= ab
∵△ABC',△BCA',△ACB'是等邊三角形,
∴S2= ccsin60°= c2,S3= aasin60°= a2,S4= bbsin60°= b2,
∴S1+S2= (ab+c2),S3+S4= (a2+b2),
∵c2=a2+b2﹣2abcos∠C=a2+b2﹣2abcos60°,
∴a2+b
∴S1+S2=S3+S4
【解析】解:(1)在△DEF中,∠F=60°,∠D、∠E的對(duì)邊分別是3和8,
∴EF=3,DF=8,
∴S△DEF= EF×DFsin∠F= ×3×8×sin60°=6 ,
DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,
所以答案是:6 ,49;
【考點(diǎn)精析】掌握同角三角函數(shù)的關(guān)系(倒數(shù)、平方和商)是解答本題的根本,需要知道各銳角三角函數(shù)之間的關(guān)系:平方關(guān)系(sin2A+cos2A=1);倒數(shù)關(guān)系(tanAtan(90°—A)=1);弦切關(guān)系(tanA=sinA/cosA ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC⊥BD,點(diǎn)E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),依次連接各邊中點(diǎn)得到四邊形EFGH,求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),且BF=ED,求證:AE∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦了一次成語(yǔ)知識(shí)競(jìng)賽,滿分10分,學(xué)生得分均為整數(shù),成績(jī)達(dá)到6分及6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競(jìng)賽中,甲、乙兩組學(xué)生成績(jī)分布的折線統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如圖所示.
(1)求出下列成績(jī)統(tǒng)計(jì)分析表中a,b的值:
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 6.8 | a | 3.76 | 90% | 30% |
乙組 | b | 7.5 | 1.96 | 80% | 20% |
(2)小英同學(xué)說(shuō):“這次競(jìng)賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面表格判斷,小英是甲、乙哪個(gè)組的學(xué)生;
(3)甲組同學(xué)說(shuō)他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說(shuō)法,認(rèn)為他們組的成績(jī)要好于甲組.請(qǐng)你寫(xiě)出兩條支持乙組同學(xué)觀點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)中學(xué)生的體質(zhì),某校食堂每天都為學(xué)生提供一定數(shù)量的水果,學(xué)校李老師為了了解學(xué)生喜歡吃哪種水果,進(jìn)行了抽樣調(diào)查,調(diào)查分為五種類(lèi)型:A喜歡吃蘋(píng)果的學(xué)生;B喜歡吃桔子的學(xué)生;C.喜歡吃梨的學(xué)生;D.喜歡吃香蕉的學(xué)生;E喜歡吃西瓜的學(xué)生,并將調(diào)查結(jié)果繪制成圖1和圖2 的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的數(shù)據(jù)解答下列問(wèn)題:
(1)求此次抽查的學(xué)生人數(shù);
(2)將圖2補(bǔ)充完整,并求圖1中的x;
(3)現(xiàn)有5名學(xué)生,其中A類(lèi)型3名,B類(lèi)型2名,從中任選2名學(xué)生參加體能測(cè)試,求這兩名學(xué)生為同一類(lèi)型的概率(用列表法或樹(shù)狀圖法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn):
(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣ |;
(2)a(3﹣2a)+2(a+1)(a﹣1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn),連接CP,過(guò)點(diǎn)P作PC的垂線交AD于點(diǎn)E,以 PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上,對(duì)角線EG、PF相交于點(diǎn)O.
(1)若AP=1,則AE=;
(2)①求證:點(diǎn)O一定在△APE的外接圓上; ②當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)O也隨之運(yùn)動(dòng),求點(diǎn)O經(jīng)過(guò)的路徑長(zhǎng);
(3)在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)過(guò)程中,△APE的外接圓的圓心也隨之運(yùn)動(dòng),求該圓心到AB邊的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知常數(shù)p>0,數(shù)列{an}滿足an+1=|p﹣an|+2an+p,n∈N*.
(1)若a1=﹣1,p=1, ①求a4的值;
②求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若數(shù)列{an}中存在三項(xiàng)ar , as , at(r,s,t∈N*,r<s<t)依次成等差數(shù)列,求 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為( )
A.10°
B.15°
C.20°
D.25°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com