【題目】如圖1,在△ABC中,設(shè)∠A、∠B、∠C的對(duì)邊分別為a,b,c,過(guò)點(diǎn)A作AD⊥BC,垂足為D,會(huì)有sin∠C= ,則
SABC= BC×AD= ×BC×ACsin∠C= absin∠C,
即SABC= absin∠C
同理SABC= bcsin∠A
SABC= acsin∠B
通過(guò)推理還可以得到另一個(gè)表達(dá)三角形邊角關(guān)系的定理﹣余弦定理:
如圖2,在△ABC中,若∠A、∠B、∠C的對(duì)邊分別為a,b,c,則
a2=b2+c2﹣2bccos∠A
b2=a2+c2﹣2accos∠B
c2=a2+b2﹣2abcos∠C

用上面的三角形面積公式和余弦定理解決問(wèn)題:
(1)如圖3,在△DEF中,∠F=60°,∠D、∠E的對(duì)邊分別是3和8.求SDEF和DE2

解:SDEF= EF×DFsin∠F=;
DE2=EF2+DF2﹣2EF×DFcos∠F=
(2)如圖4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分別是以AB、BC、AC為邊長(zhǎng)的等邊三角形,設(shè)△ABC、△ABC'、△BCA'、△ACB'的面積分別為S1、S2、S3、S4 , 求證:S1+S2=S3+S4

【答案】
(1)6 ;49
(2)

證明:方法1,∵∠ACB=60°,

∴AB2=AC2+BC2﹣2ACBCcos60°=AC2+BC2﹣ACBC,

兩邊同時(shí)乘以 sin60°得, AB2sin60°= AC2sin60°+ BC2sin60°﹣ ACBCsin60°,

∵△ABC',△BCA',△ACB'是等邊三角形,

∴S1= ACBCsin60°,S2= AB2sin60°,S3= BC2sin60°,S4= AC2sin60°,

∴S2=S4+S3﹣S1,

∴S1+S2=S3+S4

方法2、令∠A,∠B,∠C的對(duì)邊分別為a,b,c,

∴S1= absin∠C= absin60°= ab

∵△ABC',△BCA',△ACB'是等邊三角形,

∴S2= ccsin60°= c2,S3= aasin60°= a2,S4= bbsin60°= b2,

∴S1+S2= (ab+c2),S3+S4= (a2+b2),

∵c2=a2+b2﹣2abcos∠C=a2+b2﹣2abcos60°,

∴a2+b=c2+ab,

∴S1+S2=S3+S4


【解析】解:(1)在△DEF中,∠F=60°,∠D、∠E的對(duì)邊分別是3和8,
∴EF=3,DF=8,
∴SDEF= EF×DFsin∠F= ×3×8×sin60°=6 ,
DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,
所以答案是:6 ,49;
【考點(diǎn)精析】掌握同角三角函數(shù)的關(guān)系(倒數(shù)、平方和商)是解答本題的根本,需要知道各銳角三角函數(shù)之間的關(guān)系:平方關(guān)系(sin2A+cos2A=1);倒數(shù)關(guān)系(tanAtan(90°—A)=1);弦切關(guān)系(tanA=sinA/cosA ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC⊥BD,點(diǎn)E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),依次連接各邊中點(diǎn)得到四邊形EFGH,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),且BF=ED,求證:AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦了一次成語(yǔ)知識(shí)競(jìng)賽,滿分10分,學(xué)生得分均為整數(shù),成績(jī)達(dá)到6分及6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競(jìng)賽中,甲、乙兩組學(xué)生成績(jī)分布的折線統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如圖所示.

(1)求出下列成績(jī)統(tǒng)計(jì)分析表中a,b的值:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.8

a

3.76

90%

30%

乙組

b

7.5

1.96

80%

20%


(2)小英同學(xué)說(shuō):“這次競(jìng)賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面表格判斷,小英是甲、乙哪個(gè)組的學(xué)生;
(3)甲組同學(xué)說(shuō)他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說(shuō)法,認(rèn)為他們組的成績(jī)要好于甲組.請(qǐng)你寫(xiě)出兩條支持乙組同學(xué)觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)中學(xué)生的體質(zhì),某校食堂每天都為學(xué)生提供一定數(shù)量的水果,學(xué)校李老師為了了解學(xué)生喜歡吃哪種水果,進(jìn)行了抽樣調(diào)查,調(diào)查分為五種類(lèi)型:A喜歡吃蘋(píng)果的學(xué)生;B喜歡吃桔子的學(xué)生;C.喜歡吃梨的學(xué)生;D.喜歡吃香蕉的學(xué)生;E喜歡吃西瓜的學(xué)生,并將調(diào)查結(jié)果繪制成圖1和圖2 的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的數(shù)據(jù)解答下列問(wèn)題:
(1)求此次抽查的學(xué)生人數(shù);
(2)將圖2補(bǔ)充完整,并求圖1中的x;
(3)現(xiàn)有5名學(xué)生,其中A類(lèi)型3名,B類(lèi)型2名,從中任選2名學(xué)生參加體能測(cè)試,求這兩名學(xué)生為同一類(lèi)型的概率(用列表法或樹(shù)狀圖法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算或化簡(jiǎn):
(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣ |;
(2)a(3﹣2a)+2(a+1)(a﹣1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn),連接CP,過(guò)點(diǎn)P作PC的垂線交AD于點(diǎn)E,以 PE為邊作正方形PEFG,頂點(diǎn)G在線段PC上,對(duì)角線EG、PF相交于點(diǎn)O.
(1)若AP=1,則AE=;
(2)①求證:點(diǎn)O一定在△APE的外接圓上; ②當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)O也隨之運(yùn)動(dòng),求點(diǎn)O經(jīng)過(guò)的路徑長(zhǎng);
(3)在點(diǎn)P從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)過(guò)程中,△APE的外接圓的圓心也隨之運(yùn)動(dòng),求該圓心到AB邊的距離的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù)p>0,數(shù)列{an}滿足an+1=|p﹣an|+2an+p,n∈N*.
(1)若a1=﹣1,p=1, ①求a4的值;
②求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若數(shù)列{an}中存在三項(xiàng)ar , as , at(r,s,t∈N*,r<s<t)依次成等差數(shù)列,求 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為(
A.10°
B.15°
C.20°
D.25°

查看答案和解析>>

同步練習(xí)冊(cè)答案