【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2﹣2ax+4a+2(a是常數(shù)),
(Ⅰ)若該拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),求a的值及該拋物線與x軸另一交點(diǎn)坐標(biāo);
(Ⅱ)不論a取何實(shí)數(shù),該拋物線都經(jīng)過定點(diǎn)H.
①求點(diǎn)H的坐標(biāo);
②證明點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).
【答案】(Ⅰ)a=﹣,拋物線與x軸另一交點(diǎn)坐標(biāo)是(0,0);(Ⅱ)①點(diǎn)H的坐標(biāo)為(2,6);②證明見解析.
【解析】
(I)根據(jù)該拋物線與x軸的一個(gè)交點(diǎn)為(-1,0),可以求得的值及該拋物線與x軸另一交點(diǎn)坐標(biāo);
(II)①根據(jù)題目中的函數(shù)解析式可以求得點(diǎn)H的坐標(biāo);
②將題目中的函數(shù)解析式化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)即可證明點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).
(Ⅰ)∵拋物線y=x2﹣2ax+4a+2與x軸的一個(gè)交點(diǎn)為(﹣1,0),
∴0=(﹣1)2﹣2a×(﹣1)+4a+2,
解得,a=﹣,
∴y=x2+x=x(x+1),
當(dāng)y=0時(shí),得x1=0,x2=﹣1,
即拋物線與x軸另一交點(diǎn)坐標(biāo)是(0,0);
(Ⅱ)①∵拋物線y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),
∴不論a取何實(shí)數(shù),該拋物線都經(jīng)過定點(diǎn)(2,6),
即點(diǎn)H的坐標(biāo)為(2,6);
②證明:∵拋物線y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,
∴該拋物線的頂點(diǎn)坐標(biāo)為(a,﹣(a﹣2)2+6),
則當(dāng)a=2時(shí),﹣(a﹣2)2+6取得最大值6,
即點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建文明城市,增強(qiáng)學(xué)生的環(huán)保意識(shí).隨機(jī)抽取8名學(xué)生,對(duì)他們的垃圾分類投放情況進(jìn)行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯(cuò)誤,統(tǒng)計(jì)情況如下表.
學(xué)生 垃圾類別 | ||||||||
廚余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名學(xué)生中至少有三類垃圾投放正確的概率;
(2)為進(jìn)一步了解垃圾分類投放情況,現(xiàn)從8名學(xué)生里“有害垃圾”投放錯(cuò)誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑AB的延長(zhǎng)線上,且∠CDB=∠CAD,過點(diǎn)A作⊙O的切線,交CD的延長(zhǎng)線于點(diǎn)E.
(1)判定直線CD與⊙O的位置關(guān)系,并說明你的理由;
(2)若CB=4,CD=8,①求圓的半徑.②求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+ 的圖象經(jīng)過A(﹣1,0),B(3,0),與y軸相交于點(diǎn)C.點(diǎn)P為第一象限的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P分別做BC和x軸的垂線,交BC于點(diǎn)E和F,交x軸于點(diǎn)M和N.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求線段PE最大值,并求出線段PE最大時(shí)點(diǎn)P的坐標(biāo);
(3)若S△PMN=3S△PEF時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3),B(2,5),C(4,2)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)
(1)將△ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A1,請(qǐng)畫出△A1B1C1;
(2)作出△ABC關(guān)于O點(diǎn)成中心對(duì)稱的△A2B2C2,并直接寫出A2,B2,C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2是否成中心對(duì)稱?若是,請(qǐng)寫出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時(shí)間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請(qǐng)根據(jù)要求解答下列問題:
(1)在飛行過程中,當(dāng)小球的飛行高度為15m時(shí),飛行時(shí)間是多少?
(2)在飛行過程中,小球從飛出到落地所用時(shí)間是多少?
(3)在飛行過程中,小球飛行高度何時(shí)最大?最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在正方形ABCD中,點(diǎn)E、F分別為邊BC與CD上的點(diǎn),且∠EAF=45°,AE與AF分別交對(duì)角線BD于點(diǎn)M、N,則下列結(jié)論正確的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<12),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( 。
A.4或5B.4或7C.4或5或7D.4或7或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實(shí)物圖.車架檔AC與CD的長(zhǎng)分別為45cm,60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長(zhǎng);
(2)求車座點(diǎn)E到車架檔AB的距離.
(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com