【題目】已知直線可變形為:,則點(diǎn)P)到直線的距離d可用公式計(jì)算

例如:求點(diǎn)P(-2,1)到直線的距離

解:因?yàn)橹本可變形為,其中

所以點(diǎn)P(-2,1)到直線的距離為

根據(jù)以上材料求:

(1)點(diǎn)P(2,-1)到直線的距離;

(2)已知M為直線上的點(diǎn),且M到直線的距離為,求M的坐標(biāo);

(3)已知線段上的點(diǎn)到直線的最小距離為1,求k的值

【答案】(1);(2)M(6,-4)或M(-4,6);(3)

【解析】1)將P的坐標(biāo)代入點(diǎn)到直線的距離公式即可直接求出答案;

(2)利用距離公式建立方程即可求解;

(3)利用點(diǎn)到直線的距離公式和待定系數(shù)法即可求出答案

(1)直線化為:,其中

(2)設(shè)M),直線化為:,其中k=2,,故M到直線的距離為:

M(6,-4)或M(-4,6)

(3)設(shè)上到直線距離為1的點(diǎn)為()或(

直線化為,其中

把()代入

∵直線的交點(diǎn)橫坐標(biāo)為

同理,將()代入距離公式,得

舍去)

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點(diǎn)M,且DM2,平行四邊形ABCD的周長(zhǎng)是14,則BC的長(zhǎng)等于( 。

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,三角形ABC的頂點(diǎn)都在格點(diǎn)上,將三角形ABC向右平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到三角形A′B′C′

(1)請(qǐng)?jiān)趫D中畫出三角形A′B′C′;

(2)求三角形ABC的面積

(3)AC的長(zhǎng)約為2.8,則邊AC上的高約為多少?(結(jié)果保留分?jǐn)?shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說明理由;
(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè) , , ,請(qǐng)?zhí)剿? , 滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)三國(guó)時(shí)期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長(zhǎng)為14,正方形IJKL的邊長(zhǎng)為2,且IJ//AB,則正方形EFGH的邊長(zhǎng)為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A—C—B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1 , C2兩段組成,如圖2所示.

(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析表達(dá)式為,且軸交于點(diǎn).直線經(jīng)過點(diǎn)、,直線交于點(diǎn)

(1)求點(diǎn)的坐標(biāo);

(2)求直線的解析表達(dá)式;

(3)求的面積;

(4)在直線上存在異于點(diǎn)的另一個(gè)點(diǎn),使得的面積相等,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cmP點(diǎn)在AD邊上以每秒1cm的速度從AD運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線段PQ有( )次平行于AB

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于任意一點(diǎn)P(x,y),我們做以下規(guī)定:d(P)=|x|+|y|,稱d(P)為點(diǎn)P的坐標(biāo)距離.

(1)已知:點(diǎn)P(3,﹣4),求點(diǎn)P的坐標(biāo)距離d(P)的值.

(2)如圖,四邊形OABC為正方形,且點(diǎn)A、B在第一象限,點(diǎn)C在第四象限.

①求證:d(A)=d(C).

②若OC=2,且滿足d(A)+d(C)=d(B)+2,求點(diǎn)B坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案