【題目】如圖1,已知矩形AOCBAB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結(jié)束運動.

1)當運動時間為2s時,PQ兩點的距離為   cm;

2)請你計算出發(fā)多久時,點P和點Q之間的距離是10cm;

3)如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連結(jié)AC,與PQ相交于點D,若雙曲線過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.

【答案】(1)6;(2)t=t=,理由見解析;(3k的值是不會變化,k= ,理由見解析

【解析】

1)構(gòu)造出直角三角形,再求出PE,QE,利用勾股定理即可得出結(jié)論;

2)同(2)的方法利用勾股定理建立方程求解即可得出結(jié)論;

3)先求出直線AC解析式,再求出點P,Q坐標,進而求出直線PQ解析式,聯(lián)立兩解析式即可得出結(jié)論.

1)如圖1,由運動知,AP=3×2=6cm,CQ=2×2=4cm

過點PPE⊥BCE,過點QQF⊥OAF,

四邊形APEB是矩形,

∴PE=AB=6,BE=6

∴EQ=BCBECQ=1664=6,

根據(jù)勾股定理得,PQ=6

故答案為6;

2)設(shè)運動時間為t秒時,

由運動知,AP=3tCQ=2t,

同(2)的方法得,PE=6EQ=163t2t=165t,

P和點Q之間的距離是10cm,

∴62+165t2=100

∴t=t=;

3k的值是不會變化,

理由:四邊形AOCB是矩形,

∴OC=AB=6OA=16,

∴C6,0),A0,16),

設(shè)AC直線為y=kx+b

C6,0),A0,16)代入得,解得

直線AC的解析式為y=x+16①,

設(shè)運動時間為t

∴AP=3t,CQ=2t

∴OP=163t,

∴P0,163t),Q62t),

設(shè)PQ直線為y=kx+b

P0,163t),Q6,2t),代入得,解得

∴PQ解析式為y=x+163t②,

聯(lián)立①②解得,x=,y=

∴D,),

∴k=×=是定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,下列條件中,不能判斷這個平行四邊形是菱形的是(

A. AB=ADB. BAC=DACC. BAC=ABDD. ACBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,在ABC中,∠B=90°AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動,當其中一點達到終點后,另外一點也隨之停止運動.

1)如果PQ分別從A,B同時出發(fā),那么幾秒后,PBQ的面積等于4cm2?

2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm?

3)在(1)中,當P、Q出發(fā)幾秒時,PBQ的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2x+m的圖象經(jīng)過點A(1,﹣2)

(1)求此函數(shù)圖像與坐標軸的交點坐標;

(2)P(-2,y1)Q(5,y2)兩點在此函數(shù)圖像上,試比較y1y2的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中的每個小方格都是邊長為1的正方形,我們把以格點間的連線為邊的三角形稱為格點三角形,圖中的ABC是格點三角形.在建立平面直角坐標系后,點B的坐標為(-1,-1).

(1)ABC向左平移8格后得到A1B1C1,畫出A1B1C1的圖形并寫出點B1的坐標;

(2)ABC繞點C按順時針旋轉(zhuǎn)90°后得A2B2C2,畫出A2B2C2的圖形并寫出B2的坐標;

(3)ABC以點A為位似中心放大,使放大前后對應(yīng)邊的比為12,畫出AB3C3的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇正在參加全國數(shù)學(xué)競賽,只要他再答對最后兩道單選題就能順利過關(guān),其中第一道題有3個選項,第二道題有4個選項,而這兩道題嘉淇都不會,不過嘉淇還有一次求助沒有使用(使用求助可讓主持人去掉其中一題的一個錯誤選項).

1)如果嘉淇第一題不使用求助,隨機選擇一個選項,那么嘉淇答對第一道題的概率是多少?

2)若嘉淇將求助留在第二題使用,請用畫樹狀圖或列表法求嘉淇能順利過關(guān)的概率;

3)請你從概率的角度分析,建議嘉洪在第幾題使用求助,才能使他過關(guān)的概率較大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售一款工藝品,每件的成本是50元,據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.設(shè)銷售單價x元.

1)用含x的代數(shù)式表示現(xiàn)在的銷售數(shù)量為_________件;

2)當x為多少元時,網(wǎng)店既能讓利顧客,又能每天獲得銷售利潤4000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC ABCD的對角線,延長BA至點E,使AE=AB,連接DE.

(1)求證:四邊形ACDE是平行四邊形;

(2)連接ECAD于點O,若∠EOD=2B,求證:四邊形ACDE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如果x1,x2是一元二次方程ax2+bx+c=0的兩根,

那么有x1+x2=﹣,x1x2= .這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以用來解題,例x1,x2是方程x2+6x﹣3=0的兩根,求x12+x22的值.解法可以這樣:∵x1+x2=﹣6,x1x2=﹣3x12+x22=(x1+x22﹣2x1x2=(﹣6)2﹣2×(﹣3)=42.

請你根據(jù)以上解法解答下題:已知x1,x2是方程x2﹣4x+2=0的兩根,求:

(1) 的值;

(2)(x1﹣x22的值.

查看答案和解析>>

同步練習(xí)冊答案