【題目】△AOB中,A,B兩點的坐標分別為(2,4)、(5,2).
(1)將△AOB向左平移3個單位長度,向下平移4個單位長度,得到對應(yīng)的△A1O1B1,畫出△A1O1B1并寫出點A1、O1、B1的坐標.
(2)求出△AOB的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6m,BC=12m,點P從點A出發(fā)沿AB邊向B以1m/s的速度運動,同時點Q從點B出發(fā),沿BC邊向點C以2m/s的速度運動,P、Q兩點在分別到達B、C兩點后就停止運動,設(shè)經(jīng)過ts時,△PBQ的面積為Sm2,則
(1)S與t的函數(shù)解析式為:S=_________;
(2)用表格表示:
t/s | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
S/m2 |
(3)用圖象表示:
(4)在這個問題中,自變量t的取值范圍是______;圖象的對稱軸是_______,頂點坐標是________;當t<______時,S的值隨t值的增大而_______;當t>______時,S的值隨t值的增大而_______(填“增大”或“減小”);當t=______時,S取得最大值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知菱形的邊長為6,, 點、分別是邊、上的動點(不與端點重合),且.
(1)求證: 是等邊三角形;
(2)點、在運動過程中,四邊形的面積是否變化,如果變化,請說明理由;如果不變,請求出面積;
(3)當點在什么位置時,的面積最大,并求出此時面積的最大值;
(4)如圖2,連接分別與邊、交于、,當時,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC上的點,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,則EC=( )
A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm
【答案】A
【解析】試題分析:根據(jù)平行線分線段成比例定理得到=,然后利用比例性質(zhì)求EC的長.
解:∵DE∥BC,
∴=,即=,
∴EC=0.9(cm).
故選A.
考點:平行線分線段成比例.
【題型】單選題
【結(jié)束】
6
【題目】點C是線段AB的黃金分割點(AC>BC),若AB=10cm,則AC等于( )
A. 6 cm B. cm C. cm D. cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長為6,D是BC邊上的動點,∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當BD=1,CF=3時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】口袋中裝有四個大小完全相同的小球,把它們分別標號1,2,3,4,從中隨機摸出一個球,記下數(shù)字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.
【答案】 .
【解析】試題分析:
根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù),即可計算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計3種,
∴P(兩次摸到小球的數(shù)字之和等于4)=.
【題型】解答題
【結(jié)束】
23
【題目】小亮同學想利用影長測量學校旗桿AB的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測得其長度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級學習小組在探究學習過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com