【題目】如圖,將拋物線M1yax2+4x向右平移3個(gè)單位,再向上平移3個(gè)單位,得到拋物線M2,直線yxM1的一個(gè)交點(diǎn)記為A,與M2的一個(gè)交點(diǎn)記為B,點(diǎn)A的橫坐標(biāo)是﹣3

1)求a的值及M2的表達(dá)式;

2)點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Cx軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF

當(dāng)點(diǎn)C的橫坐標(biāo)為2時(shí),直線yx+n恰好經(jīng)過(guò)正方形CDEF的頂點(diǎn)F,求此時(shí)n的值;

在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,若直線yx+n與正方形CDEF始終沒(méi)有公共點(diǎn),求n的取值范圍(直接寫(xiě)出結(jié)果).

【答案】(1)M2的頂點(diǎn)為(1,﹣1),M2的表達(dá)式為yx22x;(2)①n=﹣2;②n3,n<﹣6

【解析】

(1)將點(diǎn)A橫坐標(biāo)代入yx,即可得出點(diǎn)A縱坐標(biāo),從而得出點(diǎn)A的坐標(biāo),根據(jù)點(diǎn)A在拋物線M1yax2+4x上,代入即可得出a的值,將拋物線M1化為頂點(diǎn)式,根據(jù)平移的原則即可得出拋物線M2;

(2)①把點(diǎn)C橫坐標(biāo)代入yx,即可得出點(diǎn)C坐標(biāo),從而得出點(diǎn)F坐標(biāo),把點(diǎn)F代入yx+n即可得出n的值;

根據(jù)直線yx+n與正方形CDEF始終沒(méi)有公共點(diǎn),直接可得出n的取值范圍.

(1)∵點(diǎn)A在直線yx,且點(diǎn)A的橫坐標(biāo)是﹣3

∴A(3,﹣3)

A(3,﹣3)代入yax2+4x

解得a1,

∴M1yx2+4x,頂點(diǎn)為(2,﹣4),

∴M2的頂點(diǎn)為(1,﹣1),

∴M2的表達(dá)式為yx22x;

(2)①由題意,C(2,2),

∴F(42),

直線yx+n經(jīng)過(guò)點(diǎn)F,

∴24+n,

解得n=﹣2;

y=x代入yx22x,得

x22x=x,解得:x1=0,x2=3,

∴點(diǎn)B(3,3)

當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),點(diǎn)D的坐標(biāo)為(-30),

此時(shí)有-3+n=0,解得:n=3;

當(dāng)點(diǎn)C與點(diǎn)B重合時(shí),點(diǎn)E的坐標(biāo)為(6,0),

此時(shí)有6+n=0,解得:n=-6,

綜上可知,當(dāng)直線y=x+n與正方形CDEF始終沒(méi)有公共點(diǎn)時(shí),n3n<﹣6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)學(xué)生的環(huán)保意識(shí),某校組織了一次全校2000名學(xué)生都參加的環(huán)保知識(shí)考試,考題共10題.考試結(jié)束后,學(xué)校團(tuán)委隨機(jī)抽查部分考生的考卷,對(duì)考生答題情況進(jìn)行分析統(tǒng)計(jì),發(fā)現(xiàn)所抽查的考卷中答對(duì)題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問(wèn)題:

(1)本次抽查的樣本容量是   ;在扇形統(tǒng)計(jì)圖中,m=   ,n=   ,“答對(duì)8所對(duì)應(yīng)扇形的圓心角為   度;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)請(qǐng)根據(jù)以上調(diào)查結(jié)果,估算出該校答對(duì)不少于8題的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形矩形,連結(jié),延長(zhǎng)分別交、于點(diǎn)、,延長(zhǎng)、交于點(diǎn),一定能求出面積的條件是(

A.矩形和矩形的面積之差B.矩形和矩形的面積之差

C.矩形和矩形的面積之差D.矩形和矩形的面積之差

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AD為O的直徑,BC為O的切線,切點(diǎn)為M,分別過(guò)A,D兩點(diǎn)作BC的垂線,垂足分別為B,C,AD的延長(zhǎng)線與BC相交于點(diǎn)E.

(1)求證:△ABM∽△MCD;

(2)若AD=8,AB=5,求ME的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)yx0)的圖象與直線y=2x+1交于點(diǎn)A1,m

1)求k,m的值;

2)已知點(diǎn)P0,n)(n0),過(guò)點(diǎn)P作平行于x軸的直線,交直線y=2x+1于點(diǎn)B,交函數(shù)yx0)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

當(dāng)n=1時(shí),寫(xiě)出線段BC上的整點(diǎn)的坐標(biāo);

yx0)的圖象在點(diǎn)AC之間的部分與線段ABBC所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠B90°,AB6AD1,BC2,PAB邊上的動(dòng)點(diǎn),當(dāng)△PAD與△PBC相似時(shí),PA_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,△AEF為等腰直角三角形,∠AEF90°,連接FCGFC的中點(diǎn),連接GDED

1)如圖,EAB上,直接寫(xiě)出ED,GD的數(shù)量關(guān)系.

2)將圖中的△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),其它條件不變,如圖,(1)中的結(jié)論是否成立?說(shuō)明理由.

3)若AB5,AE1,將圖中的△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一周,當(dāng)E,FC三點(diǎn)共線時(shí),直接寫(xiě)出ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)

1)將△ABC向下平移6個(gè)單位得到△A1B1C1,畫(huà)出△A1B1C1

2)將△A1B1C1繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△A2B1C2畫(huà)出△A2B1C2;

3)求在平移和旋轉(zhuǎn)變換過(guò)程中線段BC所掃過(guò)的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=y1+y2,其中y1x成反比例,y2x2成正比例,函數(shù)的自變量x的取值范圍是x,且當(dāng)x=1x=4時(shí),y的值均為

請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:

1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:   

2)函數(shù)圖象探究:

根據(jù)解析式,補(bǔ)全下表:

根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出函數(shù)圖象

3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:

當(dāng)x,,8時(shí),函數(shù)值分別為y1,y2,y3,則y1,y2,y3的大小關(guān)系為:   ;(用“<”或“=”表示)

若直線y=k與該函數(shù)圖象有兩個(gè)交點(diǎn),則k的取值范圍是   ,此時(shí),x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案