【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當(dāng)PA=CQ時,連接PQ交邊AC于點D,則DE的長為( )
A. B. C. D.不能確定
【答案】B
【解析】
試題過P作PF∥BC交AC于F,得出等邊三角形APF,推出AP=PF=QC,根據(jù)等腰三角形性質(zhì)求出EF=AE,證△PFD≌△QCD,推出FD=CD,推出DE=AC即可.
解:過P作PF∥BC交AC于F,
∵PF∥BC,△ABC是等邊三角形,
∴∠PFD=∠QCD,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,
∴△APF是等邊三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ,
在△PFD和△QCD中
,
∴△PFD≌△QCD,
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE=AC,
∵AC=3,
∴DE=,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,延長BG交AC于E、 F為AB上的一點,CF⊥AD于H,下列判斷正確的有( )
A.AD是△ABE的角平分線B.BE是△ABD邊AD上的中線
C.AH為△ABC的角平分線D.CH為△ACD邊AD上的高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,AB=4cm,點P從點D出發(fā)沿DA向點A勻速運(yùn)動,速度是1cm/s,同時,點Q從點A出發(fā)沿AB方向,向點B勻速運(yùn)動,速度是2cm/s,連接PQ、CP、CQ,設(shè)運(yùn)動時間為t(s)(0<t<2)
(1)是否存在某一時刻t,使得PQ∥BD?若存在,求出t值;若不存在,說明理由
(2)設(shè)△PQC的面積為s(cm2),求s與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,與線段PQ相交于點M,是否存在某一時刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在D處測得山頂C的仰角為37°,向前走100米來到山腳A處,測得山坡AC的坡度為i=1:0.5,求山的高度(不計測角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖所示,二次函數(shù)y=-mx2+4m的頂點坐標(biāo)為(0,2),矩形ABCD的頂點B,C在x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi),且點A在點D的左側(cè).
(1)求二次函數(shù)的解析式;
(2)設(shè)點A的坐標(biāo)為(x,y),試求矩形ABCD的周長p關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com