【題目】在平面直角坐標系中,點A的坐標為(1,0),點B的坐標為(m,5﹣m),當AB的長最小時,m的值為_____
科目:初中數(shù)學 來源: 題型:
【題目】某廠改進工藝降低了某種產品的成本,兩個月內從每件產品250元,降低到了每件160元,平均每月降低率為( 。
A.15%
B.20%
C.5%
D.25%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉動的支點,點E是欄桿兩段的聯(lián)結點.當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】截止北京時間2020年4月13日,全球新冠肺炎感染者者達1850000人,數(shù)據(jù)“1850000”用科學記數(shù)法表示為( )
A.1.85×104B.1.85×105C.1.85×106D.1.85×107
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列性質中,等腰三角形具有而直角三角形不一定具有的是( )
A.任意兩邊之和大于第三邊
B.內角和等于180°
C.有兩個銳角的和等于90°
D.有一個角的平分線垂直于這個角的對邊
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖1,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變圖1中燈泡的高度,將兩個邊長為30cm的正方形框架按圖2擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖3擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式 =1﹣ , = ﹣ , = ﹣ ,把以上三個等式兩邊分別相加得: + + =1﹣ + ﹣ + ﹣ =1﹣ = .
(1)猜想并寫出: = .
(2)直接寫出下列各式的計算結果:
① + + +…+ =;
② + + +…+ = .
(3)探究并計|算: +…+ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com