【題目】計算題
(1)計算:(﹣1)2017﹣4cos60°+ +
(2)先化簡,再求值:(a﹣ )÷ ,其中a滿足a2+3a﹣1=0.

【答案】
(1)解:原式=﹣1﹣4× +1+9=7;
(2)解:∵a2+3a﹣1=0,

∴a2+3a=1,

∴(a﹣ )÷ = × =(a+1)(a+2)=a2+3a+2=1+2=3.


【解析】(1)先計算負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪,然后計算加減法;(2)由a2+3a﹣1=0得到a2+3a=1,整體代入所求的代數(shù)式.
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】解答題。
(1)解方程:x2﹣2x﹣3=0
(2)若關(guān)于x的方程2x2﹣5x+c=0沒有實數(shù)根,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠C=90°,AB=5,內(nèi)切圓半徑為1,則三角形的周長為(
A.15
B.12
C.13
D.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.

(1)請直接寫出線段AF,AE的數(shù)量關(guān)系;
(2)將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿線段AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:△AGE≌△AGD
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF= ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一塊含30°角的直角三角版和半圓量角器按如圖的方式擺放,使斜邊與半圓相切.若半徑OA=4,則圖中陰影部分的面積為 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線的對稱軸DE交x軸于點E,連接BD.

(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達式;
(2)點P是線段BD上一點,當PE=PC時,求點P的坐標;
(3)在(2)的條件下,過點P作PF⊥x軸于點F,G為拋物線上一動點,M為x軸上一動點,N為直線PF上一動點,當以F、M、N、G為頂點的四邊形是正方形時,請求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù) 的圖象交于C、D兩點,DE⊥x軸于點E.已知C點的坐標是(6,﹣1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

同步練習冊答案