【題目】如圖,正方形ABCD中,以對角線BD為邊作菱形BDFE,使BC,E三點在同一直線上,連接BF,交CD于點G

1)求證:CG=CE;

2)若正方形邊長為4,求菱形BDFE的面積.

【答案】1)證明見解析;(216

【解析】

1)連接DE,則DEBF,可得∠CDE=CBG,根據(jù)BC=DC,∠BCG=DCE,可證BCG≌△DCE,可證CG=CE
2)已知正方形的邊長可以證明BD,即BE,根據(jù)BE,DC即可求菱形BDFE的面積.

解(1)證明:連接DE,則DEBF,


∵∠CBG+BED=90°,∠CBG+CGB=90°,∠CGB=BED

又∵BC=DC,∠BCG=DCE,
∴△BCG≌△DCEAAS),
CG=CE,
2)正方形邊長BC=4,則BD=BE=,DC=4,菱形BDFE的面積為S=4×4=16
答:菱形BDFE的面積為16

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD,ABDC,B90°FDC上一點,FCABEAD上一點,ECAF于點G.

(1)求證:四邊形ABCF是矩形;

(2)EDEC,求證:EAEG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)若AE=4,cosA= ,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關系.

解決此問題可以用如下方法:延長AE交DC的延長線于點F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉化在一個三角形中即可判斷.
AB、AD、DC之間的等量關系為;
(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點F,E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關系,并證明你的結論.

(3)問題解決:如圖③,AB∥CF,AE與BC交于點E,BE:EC=2:3,點D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】抖音將“重慶洪崖洞”抖成了全國知名景點,五一期間,很多外地游客都慕名前來打卡.小麗和小萌二人約定分別從貴陽和遵義自駕到重慶游玩,由于貴陽到重慶的路程更遠,所以小麗先出發(fā),2.2小時后小萌才出發(fā)追趕小麗,她們二人離貴陽的距離(千米)與小麗行駛的時間(小時)之間的關系圖像如圖所示,請根據(jù)圖像回答下列問題:

1)小麗的速度為 千米/小時,小萌的速度為 千米/小時;

2)當小萌追上小麗時,她們離貴陽的距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“2017年張學友演唱會”于6月3日在我市觀山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會,到奧體中心后,發(fā)現(xiàn)演唱會門票忘帶了,此時離演唱會開始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回奧體中心,已知小張騎車的時間比跑步的時間少用了4分鐘,且騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張在家取票和尋找“共享單車”共用了5分鐘,他能否在演唱會開始前趕到奧體中心?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形ABC,EFAC交直線AB于點EDFAB交直線AC于點D.

1如圖1,若點F在邊BC上,

①補全圖形;

②判斷∠BAC與∠EFD的數(shù)量關系,并給予證明;

2若點F在邊BC的延長線上,1中的結論還成立嗎?若成立,給予證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一次函數(shù)圖像的交點在第一象限,則一次函數(shù)的圖像不經(jīng)過( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀材料)

我們知道,圖形也是一種重要的數(shù)學語言,它直觀形象,能有效地表現(xiàn)一些代數(shù)中的數(shù)量關系,而運用代數(shù)思想也能巧妙地解決一些圖形問題.

在一次數(shù)學活動課上,張老師準備了若干張如圖1所示的甲、乙、丙三種紙片,其中甲種紙片是邊長為的正方形,乙種紙片是邊長為的正方形,丙種紙片是長為,寬為的長方形,并用甲種紙片一張,乙種紙片一張,丙種紙片兩張拼成了如圖2所示的一個大正方形.

(理解應用)

1)觀察圖2,用兩種不同方式表示陰影部分的面積可得到一個等式,請你直接寫出這個等式.

(拓展升華)

2)利用(1)中的等式解決下列問題.

①已知,,求的值;

②已知,求的值.

    

查看答案和解析>>

同步練習冊答案