【題目】如圖:已知等邊△ABC中,D是AC的中點,E是BC延長線上的一點,且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數.
(2)求證:M是BE的中點.
【答案】(1)∠E=30°;(2)證明見解析.
【解析】試題分析:(1)由等邊△ABC的性質可得:∠ACB=∠ABC=60°,然后根據等邊對等角可得:∠E=∠CDE,最后根據外角的性質可求∠E的度數;
(2)連接BD,由等邊三角形的三線合一的性質可得:∠DBC=∠ABC=×60°=30°,結合(1)的結論可得:∠DBC=∠E,然后根據等角對等邊,可得:DB=DE,最后根據等腰三角形的三線合一的性質可得:M是BE的中點.
試題解析:(1)∵三角形ABC是等邊△ABC,
∴∠ACB=∠ABC=60°,
又∵CE=CD,
∴∠E=∠CDE,
又∵∠ACB=∠E+∠CDE,
∴∠E=∠ACB=30°;
(2)連接BD,
∵等邊△ABC中,D是AC的中點,
∴∠DBC=∠ABC=×60°=30°
由(1)知∠E=30°
∴∠DBC=∠E=30°
∴DB=DE
又∵DM⊥BC
∴M是BE的中點.
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2、O3 , …組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒 個單位長度,則第2017秒時,點P的坐標是( )
A.(2016,0)
B.(2017,1)
C.(2017,﹣1)
D.(2018,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:對于實數a,符號[a]表示不大于a的最大整數,例如:[4.7]=4,[﹣π]=﹣4,[3]=3,如果[ +1]=﹣5,則x的取值范圍為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列計算結果正確的是( 。
A.﹣2x2y3x3y3=﹣2x6y9B.12x6y4÷2x3y3=6x3y
C.3x3y2﹣x2y3=xyD.(﹣2a﹣3)(2a﹣3)=4a2﹣9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△OAB的邊長為2,點B在x軸上,反比例函數的圖象經過A點,將△OAB繞點O順時針旋轉α(0°<α<360°),使點A落在雙曲線上,則α=________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線C1:y=x2+4x﹣3與x軸交于A、B兩點,將C1向右平移得到C2,C2與x軸交于B、C兩點.
(1)求拋物線C2的解析式.
(2)點D是拋物線C2在x軸上方的圖象上一點,求S△ABD的最大值.
(3)直線l過點A,且垂直于x軸,直線l沿x軸正方向向右平移的過程中,交C1于點E交C2于點F,當線段EF=5時,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為積極響應南充市創(chuàng)建“全國衛(wèi)生城市”的號召,某校1500名學生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等.從中隨機抽取了部分學生成績進行統(tǒng)計,繪制成如圖兩幅不完整的統(tǒng)計圖表,根據圖表信息,以下說法不正確的是( )
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計全校學生成績?yōu)锳等大約有900人
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com