【題目】甲、乙兩位同學(xué)同時(shí)為校文化藝術(shù)節(jié)制作彩旗.已知甲每小時(shí)比乙多做5面彩旗,甲做60面彩旗與乙做50面彩旗所用時(shí)間相等,問:甲、乙每小時(shí)各做多少面彩旗?

【答案】解:設(shè)乙每小時(shí)做x面彩旗,則甲每小時(shí)做(x+5)面彩旗,依題意有=,解得:x=25.經(jīng)檢驗(yàn):x=25是原方程的解. x+5=25+5=30.
答:甲每小時(shí)做30面彩旗,乙每小時(shí)做25面彩旗.
【解析】設(shè)乙每小時(shí)做x面彩旗,則甲每小時(shí)做(x+5)面彩旗,依題意有=,解得:x=25.經(jīng)檢驗(yàn):x=25是原方程的解. x+5=25+5=30.所以答案是:甲每小時(shí)做30面彩旗,乙每小時(shí)做25面彩旗.
【考點(diǎn)精析】本題主要考查了分式方程的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,經(jīng)過點(diǎn)O的直線與邊AB相交于點(diǎn)E,與邊CD相交于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時(shí),在不添加其他輔助線的情況下,直接寫出腰長(zhǎng)等于 BD的所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解中考體育科目訓(xùn)練情況,某地從九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次考前體育科目測(cè)試,把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格,并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)請(qǐng)將兩幅不完整的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該地參加中考的學(xué)生將有4500名,根據(jù)測(cè)試情況請(qǐng)你估計(jì)不及格的人數(shù)有多少?
(3)從被抽測(cè)的學(xué)生中任選一名學(xué)生,則這名學(xué)生成績(jī)是D級(jí)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),對(duì)角線OB= ,反比例函數(shù) 經(jīng)過點(diǎn)C,則k的值等于( )

A.12
B.8
C.15
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線 y=﹣ x2平移后過點(diǎn)A(8,0)和原點(diǎn),頂點(diǎn)為B,對(duì)稱軸與x軸相交于點(diǎn)C,與原拋物線相交于點(diǎn)D.

(1)求平移后拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)直接寫出陰影部分的面積 S陰影;
(3)如圖(2),直線AB與y軸相交于點(diǎn)P,點(diǎn)M為線段OA上一動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)A,O重合 ),∠PMN為直角,MN與AP相交于點(diǎn)N,設(shè)OM=t,試探究:t為何值時(shí),△MAN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+(1﹣m)x﹣m(其中0<m<1)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸為直線l.設(shè)P為對(duì)稱軸l上的點(diǎn),連接PA、PC,PA=PC

(1)∠ABC的度數(shù)為
(2)求P點(diǎn)坐標(biāo)(用含m的代數(shù)式表示)
(3)在坐標(biāo)軸上是否存在著點(diǎn)Q(與原點(diǎn)O不重合),使得以Q、B、C為頂點(diǎn)的三角形與△PAC相似,且線段PQ的長(zhǎng)度最?如果存在,求出所有滿足條件的點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:(﹣2)2+(﹣3)0﹣(2
(2)解方程:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,請(qǐng)畫出以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長(zhǎng)為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長(zhǎng)為3的邊上標(biāo)注數(shù)字3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“皮克定理”是用來計(jì)算頂點(diǎn)在整點(diǎn)的多邊形面積的公式,公式表達(dá)式為S=a+﹣1,孔明只記得公式中的S表示多邊形的面積,a和b中有一個(gè)表示多邊形邊上(含頂點(diǎn))的整點(diǎn)個(gè)數(shù),另一個(gè)表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù),但不記得究竟是a還是b表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù),請(qǐng)你選擇一些特殊的多邊形(如圖1)進(jìn)行驗(yàn)證,得到公式中表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù)的字母是 ,并運(yùn)用這個(gè)公式求得圖2中多邊形的面積是 .

查看答案和解析>>

同步練習(xí)冊(cè)答案