【題目】如圖,在平行四邊形ABCD中,點EAD的中點,延長CEBA的延長線于點F

1)求證:ABAF;

2)若BC2AB,∠BCD100°,求∠ABE的度數(shù).

【答案】1)證明見解析;(2)∠ABE40°

【解析】

1)由四邊形ABCD是平行四邊形,點EAD的中點,易證得△DEC≌△AEFAAS),繼而可證得DCAF,又由DCAB,證得結(jié)論;

2)由(1)可知BF2ABEFEC,然后由∠BCD100°求得BE平分∠CBF,繼而求得答案.

證明:(1四邊形ABCD是平行四邊形,

∴CDABCD∥AB,

∴∠DCE∠F,∠FBC+∠BCD180°

∵EAD的中點,

∴DEAE

△DEC△AEF中,

,

∴△DEC≌△AEFAAS).

∴DCAF

∴ABAF

2)由(1)可知BF2AB,EFEC,

∵∠BCD100°,

∴∠FBC180°100°80°

∵BC2AB,

∴BFBC

∴BE平分∠CBF,

∴∠ABE∠FBC×80°40°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(π﹣3)0﹣()﹣2+(﹣1)2n

(2)(m2)n(mn)3÷mn2

(3)x(x2﹣x﹣1)

(4)(﹣3a)2a4+(﹣2a2)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知分別是的內(nèi)角平分線,過點作;垂足分別為連結(jié)的長等于_______(用含的代數(shù)式表示結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級為了解學(xué)生課堂發(fā)言情況,隨機抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為52,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

1)則樣本容量是   ,并補全直方圖;

2)該年級共有學(xué)生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);

3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.

發(fā)言次數(shù)n

A

0≤n3

B

3≤n6

C

6≤n9

D

9≤n12

E

12≤n15

F

15≤n18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的一邊AB在直尺一邊所在直線MN上,點O是對角線AC、BD的交點,過點OOEMN于點E

1)如圖1,線段ABOE之間的數(shù)量關(guān)系為   .(請直接填結(jié)論)

2)保證點A始終在直線MN上,正方形ABCD繞點A旋轉(zhuǎn)θ0θ90°),過點 BBFMN于點F

①如圖2,當點O、B兩點均在直線MN右側(cè)時,試猜想線段AF、BFOE之間存在怎樣的數(shù)量關(guān)系?請說明理由.

②如圖3,當點O、B兩點分別在直線MN兩側(cè)時,此時①中結(jié)論是否依然成立呢?若成立,請直接寫出結(jié)論;若不成立,請寫出變化后的結(jié)論并證明.

③當正方形ABCD繞點A旋轉(zhuǎn)到如圖4的位置時,線段AF、BFOE之間的數(shù)量關(guān)系為   .(請直接填結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:若x2+y2+2x-4y+5=0,xy.

解:∵x2+y2+2x-4y+5=0,(x2+2x+1+y2-4y+4=0

∴(x+12+y-22=0 ∴(x+12=0,(y-22=0

x=-1,y=2.

根據(jù)你的觀察,探究下面的問題:

已知:如圖,ABC,A、∠B、∠C所對的邊分別為a、b、c,EAC邊上的一個動點(E與點AC不重合).

(1)a、b滿足a2+b216a12b+100=0,c是不等式組的最大整數(shù)解,試求ABC的三邊長;

(2)(1)的條件得到滿足的ABC中,若設(shè)AE=m,則當m滿足什么條件時,BEABC的周長分成兩部分的差不小于2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過PPEAB,通過平行線性質(zhì)來求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問題遷移:如圖2,ABCD,點P在射線OM上運動,記∠PAB=α,PCD=β,當點PB、D兩點之間運動時,問∠APCα、β之間有何數(shù)量關(guān)系?請說明理由;

(3)(2)的條件下,如果點PB、D兩點外側(cè)運動時(點P與點O、B、D三點不重合),請直接寫出∠APCα、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級組織有獎知識競賽,派小明去購買A、B兩種品牌的鋼筆作為獎品.已知一支A品牌鋼筆的價格比一支B品牌鋼筆的價格多5元,且買100A品牌鋼筆與買50B品牌鋼筆數(shù)目相同.

1)求A、B兩種品牌鋼筆的單價分別為多少元?

2)根據(jù)活動的設(shè)獎情況,決定購買AB兩種品牌的鋼筆共100支,如果設(shè)購買A品牌鋼筆的數(shù)量為n支,購買這兩種品牌的鋼筆共花費y元.

①直接寫出y(元)關(guān)于n(支)的函數(shù)關(guān)系式;

②如果所購買A品牌鋼筆的數(shù)量不少于B品牌鋼筆數(shù)量的,請你幫助小明計算如何購買,才能使所花費的錢最少?此時花費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD,M,N分別在直線AB,CD,E為平面內(nèi)一點.

(1)如圖1,BME,E,END的數(shù)量關(guān)系為 (直接寫出答案);

(2)如圖2BME,EF平分∠MEN,NP平分∠ENDEQNP,求∠FEQ的度數(shù)(用用含m的式子表示)

(3)如圖3GCD上一點,BMNEMN,GEKGEM,EHMNAB于點H探究∠GEK,BMN,GEH之間的數(shù)量關(guān)系(用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊答案