精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,OABC的頂點Ax軸上,頂點B的坐標為(64).若直線l經過點(1,0),且將OABC分割成面積相等的兩部分,則直線l的函數解析式是( 。

A. yx+1B. C. y3x3D. yx1

【答案】D

【解析】

首先根據條件l經過點D10),且將OABC分割成面積相等的兩部分,求出E點坐標,然后設出函數關系式,再利用待定系數法把D,E兩點坐標代入函數解析式,可得到答案.

解:設D1,0),

∵線l經過點D1,0),且將OABC分割成面積相等的兩部分,

ODBE1,

∵頂點B的坐標為(6,4).

E54

設直線l的函數解析式是ykx+b,

∵圖象過D1,0),E5,4),

,

解得:

∴直線l的函數解析式是yx1

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點T(1,1)為位似中心,在位似中心的同側將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應點分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點A′,B′,C′的坐標:

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應點D′的坐標為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在大課間活動中,同學們積極參加體育鍛煉,小龍在全校隨機抽取了一部分同學就“我最喜愛的體育項目”進行了一次調查(每位同學必選且只選一項).下面是他通過收集的數據繪制的兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息,解答以下問題:

(1)小龍一共抽取了   名學生.

(2)補全條形統(tǒng)計圖;

(3)求“其他”部分對應的扇形圓心角的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F為對角線BD上的兩點,且∠DAE=∠BCF

求證:(1AECF

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CDBDE、FO,連接DE、BF

1)求證:四邊形BEDF是菱形;

2)若AB=16cm,BC=8cm,求四邊形DEBF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,對稱軸為直線x=1的拋物線y=﹣x2+bx+cx軸交于點A和點B,與y軸交于點C,且點B的坐標為(﹣1,0)

(1)求拋物線的解析式并作出圖象;

(2)D的坐標為(0,1),點P是拋物線上的動點,若△PCD是以CD為底的等腰三角形,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BACBC于點D,AE⊥BC,垂足為E,且CF∥AD.

(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE=   度;

(2)若圖1中的∠B=x,∠ACB=y,則∠CFE=   ;(用含x、y的代數式表示)

(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列不等式組

1

2

32x1xx5

4

5

6

查看答案和解析>>

同步練習冊答案