如圖,拋物線與直線AB交于點A(-1,0),B(4,).點D是拋物線A,B兩點間部分上的一個動點(不與點A,B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.

(1)求拋物線的解析式;
(2)設(shè)點D的橫坐標(biāo)為m,則用m的代數(shù)式表示線段DC的長;
(3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時的點C的坐標(biāo);
(4)當(dāng)點D為拋物線的頂點時,若點P是拋物線上的動點,點Q是直線AB上的動點,判斷有幾個位置能使以點P,Q,C,D為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
(1);(2);
(3);(4)

試題分析:(1)由拋物線過點A(-1,0),B(4,)根據(jù)待定系數(shù)法求解即可;
(2)先求得直線AB的函數(shù)關(guān)系式,即可用含m的代數(shù)式表示出點D、C的坐標(biāo),從而得到結(jié)果;
(3)先根據(jù)三角形的面積公式表示出S關(guān)于m的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)求解即可;
(4)根據(jù)平行四邊形的性質(zhì)結(jié)合圖形的特征求解即可,要注意分類討論.
(1)

(2)
 
(3)如圖所示:

 
(4).
點評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知反比例函數(shù)y=的圖象與二次函數(shù)y=ax2+x-1的圖象相交于點(2,2)
(1)求a和k的值;
(2)反比例函數(shù)的圖象是否經(jīng)過二次函數(shù)圖象的頂點,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點A(-1,0)、B(3,0)、C(0,),連接AC、BC,將△ABC繞點C逆時針旋轉(zhuǎn),使點A落在x軸上,得到△DCE,此時,DE所在直線與拋物線交于第一象限的點F.

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式.
(2)求點A所經(jīng)過的路線長.
(3)拋物線的對稱軸上是否存在點P使△PDF是等腰三角形.
若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與軸交于B、C兩點(點B在點C的左側(cè)),一次函數(shù)的圖象經(jīng)過點B和二次函數(shù)圖象上另一點A. 點A的坐標(biāo)(4 ,3),.

(1)求二次函數(shù)和一次函數(shù)解析式;
(2)若點P在第四象限內(nèi),求面積S的最大值并求出此時點P的坐標(biāo);
(3)若點M在直線AB上,且與點A的距離是到軸距離的倍,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過點A(-1,0),B(3,0),交軸于點CM為拋物線的頂點,連接MB

(1)求該拋物線的解析式;
(2)在軸上是否存在點P滿足△PBM是直角三角形,若存在,請求出P點的坐標(biāo),若不存在,請說明理由;
(3)設(shè)Q點的坐標(biāo)為(8,0),將該拋物線繞點Q旋轉(zhuǎn)180°后,點M的對應(yīng)點為,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=-x2+bx+c的圖象與x軸的一個交點坐標(biāo)為(-1,0),與y軸的交點坐標(biāo)為(0,3).
(1)求b,c的值;
(2)將二次函數(shù)y=-x2+bx+c的圖象先向下平移2個單位,再向左平移1個單位,直接寫出經(jīng)過兩次平移后的二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)-4+3取得最小值時,        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

新定義:若x0=ax02+bx0+c成立,則稱點(x0,x0)為拋物線y=ax2+bx+c (a≠0)上的不動點.設(shè)拋物線C的解析式為:y=ax2+(b+1)x+(b -1)(a≠0).
(1)拋物線C過點(0,-3);如果把拋物線C向左平移個單位后其頂點恰好在y軸上,求拋物線C的解析式及其上的不動點;
(2)對于任意實數(shù)b,實數(shù)a應(yīng)在什么范圍內(nèi),才能使拋物線C上總有兩個不同的不動點?                                           
(3)設(shè)a為整數(shù),且滿足a+b+1=0,若拋物線C與x軸兩交點的橫坐標(biāo)分別為x1, x2,是否存在整數(shù)k,使得成立?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

溱湖濕地風(fēng)景區(qū)特色旅游項目:水上游艇. 旅游人員消費后風(fēng)景區(qū)可盈利10元/人,每天消費人員為500人. 為增加盈利,準(zhǔn)備提高票價,經(jīng)調(diào)查發(fā)現(xiàn),在其他條件不變的情況下,票價每漲1元,消費人員就減少 20人.
(1)現(xiàn)該項目要保證每天盈利6000元,同時又要旅游者得到實惠,那么票價應(yīng)漲價多少元?
(2)若單純從經(jīng)濟(jì)角度看,票價漲價多少元,能使該項目獲利最多?

查看答案和解析>>

同步練習(xí)冊答案