【題目】如圖,已知△ABC,∠C=90°,AC<BC,D為BC上一點,且到A、B兩點的距離相等.
(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B=32°,求∠CAD的度數(shù).
【答案】
(1)解:如圖所示:點D即為所求
(2)解:∵△ABC,∠C=90°,∠B=32°,
∴∠BAC=58°,
∵AD=BD,
∴∠B=∠DAB=32°,
∴∠CAD=58°﹣32°=26°
【解析】(1)作線段AB的垂直平分線,交BC于一點,這點就是D點位置;(2)根據(jù)直角三角形兩銳角互余可得∠BAC的度數(shù),再根據(jù)等邊對等角可得∠DAB的度數(shù),進而可得答案.
【考點精析】利用線段垂直平分線的性質(zhì)對題目進行判斷即可得到答案,需要熟知垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是角平分線,BE平分∠ABC交AD于點E,點O在AB上,以O(shè)B為半徑的⊙O經(jīng)過點E,交AB于點F.
(1)求證:AD是⊙O的切線;
(2)若AC=4,∠C=30°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標(biāo)為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.
(1)求點C的坐標(biāo);
(2)若點P是反比例函數(shù)圖象上的一點且S△PAD=S正方形ABCD;求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“可燃冰”的開發(fā)成功,拉開了我國開發(fā)新能源的大門,目前發(fā)現(xiàn)我國南!翱扇急眱Υ媪窟_到800億噸,將800億用科學(xué)記數(shù)法可表示為( )
A.0.8×1011B.8×1010C.80×109D.800×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點D,延長CA1到A2 , 使A1A2=A1D,得到第2個△A1A2D;在邊A2D上任取一點E,延長A1A2到A3 , 使A2A3=A2E,得到第3個△A2A3E,…按此做法繼續(xù)下去,則第n個三角形中以An為頂點的底角度數(shù)是( )
A.( )n75°
B.( )n﹣165°
C.( )n﹣175°
D.( )n85°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com