【題目】 如圖,過點A(2,0)作直線l:y=的垂線,垂足為點A1,過點A1作A1A2⊥x軸,垂足為點A2,過點A2作A2A3⊥l,垂足為點A3,…,這樣依次下去,得到一組線段:AA1,A1A2,A2A3,…,則線段A2018A2019的長為______.
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點稱為整點,如圖,已知點A(0,1),B(2,0),請在所給網(wǎng)格區(qū)域(含邊界)上,按要求找到整點.
(1)畫一個直角三角形ABC,使整點C的橫坐標與縱坐標相等;
(2)若△PAB(不與△ABC重合)的面積等于△OAB的面積,則符合條件點整P共有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點為B.AC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線: 相交于和點兩點.
⑴求拋物線的函數(shù)表達式;
⑵若點是位于直線上方拋物線上的一動點,以為相鄰兩邊作平行四邊形,當平行四邊形的面積最大時,求此時四邊形的面積及點的坐標;
⑶在拋物線的對稱軸上是否存在定點,使拋物線上任意一點到點的距離等于到直線的距離,若存在,求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線y=x+1與拋物線相交于A、B兩點,與y軸交于點M,M、N關于x軸對稱,連接AN、BN.
(1)①求A、B的坐標;②求證:∠ANM=∠BNM;
(2)如圖2,將題中直線y=x+1變?yōu)?/span>y=kx+b(b>0),拋物線變?yōu)?/span>(a>0),其他條件不變,那么∠ANM=∠BNM是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨機拋擲圖中均勻的正四面體(正四面體的各面依次標有1,2,3,4四個數(shù)字),并且自由轉動圖中的轉盤(轉盤被分成面積相等的五個扇形區(qū)域).
(1) 請用列表法或樹狀圖法的方法求正四面體著地的數(shù)字與轉盤指針所指區(qū)域的數(shù)字之和為6的概率;
(2)設正四面體著地的數(shù)字為a,轉盤指針所指區(qū)域內的數(shù)字為b,求關于x的方程ax2-4x+=0有實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(﹣1,0).
(1)請直接寫出點B、C的坐標:B( )、C( );并求經(jīng)過A、B、C三點的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(1)中的拋物線交于點M.
①設AE=x,當x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形?若存在,請寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結果都精確到0.1米,參考數(shù)據(jù)).
【1】若修建的斜坡BE的坡角(即∠BAC)不大于45°,則平臺DE的長最多為 ▲ 米;
【2】一座建筑物GH距離坡腳A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面上,點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com