【題目】在平面直角坐標系中,A(-2,0) ,B(-1,2) ,C(1,0) ,連接 AB,點 D 為 AB 的中點,連接 OB 交 CD于點 E,則四邊形 DAOE 的面積為( )
A. 1. B. C. D.
【答案】C
【解析】根據(jù)中點公式求出點D的坐標,然后用待定系數(shù)法求出直線OB和直線CD的解析式,將兩個解析式聯(lián)立,求出點E的坐標,然后根據(jù)S四邊形DAOE=S△DAC-S△EOC計算即可.
如圖,
設OB的解析式為y=kx.
將B(-1,2)的坐標代入
得2=-k,解得k=-2.
∴OB的解析式為y=-2x.
∵D為AB的中點,設D(m,n).
∵A(-2,0) ,B(-1,2) ,
∴m=,n= .
∴D (,1),
設CD的解析式為y=ax+b
將C(1,0),D (,1)的坐標分別代入
得 ,解得 ,
∴CD的解析式為 .
由 ,得 ,
∴ ,
∵AC=1-(-2)=3,點D (,1)到AC軸的距離為1.
∴ ,
∵OC=1,點到OC的距離為 .
∴,
∴S四邊形DAOE=S△DAC-S△EOC= .
即四邊形DAOE的面積為 .
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題
(1)在圖中建立正確的平面直角坐標系;
(2)根據(jù)所建立的坐標系,寫出B和C的坐標;
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“世界杯”期間,某娛樂場所舉辦“消夏看球賽”活動,需要對會場進行布置,計劃在現(xiàn)場安裝小彩燈和大彩燈.已知安裝5個小彩燈和4個大彩燈共需150元;安裝7個小彩燈和6個大彩燈共需220元.
(1)安裝1個小彩燈和1個大彩燈各需多少元?
(2)若場地共需安裝小彩燈和大彩燈300個,費用不超過4350元,則最多安裝大彩燈多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為等邊三角形ABC內一點,連接OA,OB,OC,以OB為一邊作∠OBM=60°,且BO=BM,連接CM,OM.
(1)判斷AO與CM的大小關系并證明;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖一次函數(shù)y= x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y= x2+bx+c的圖象與一次函數(shù)y= x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x與雙曲線y= (k>0)交于A、B兩點,且點A的橫坐標為4.
(1)求k的值;
(2)若雙曲線y= (k>0)上一點C的縱坐標為8,求△AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com