【題目】對于反比例函數(shù)y=﹣,下列說法錯誤的是( )

A.圖象分布在第二、四象限

B.若點A(,)B(,)都在圖象上,且,則

C.圖象經(jīng)過點(1,﹣2)

D.x0時,yx的增大而增大

【答案】B

【解析】

根據(jù)反比例函數(shù)圖象與系數(shù)的關(guān)系解答.

解:A、反比例函數(shù)y=﹣中的﹣20,則該函數(shù)圖象分布在第二、四象限,故本選項說法正確.

B、反比例函數(shù)y=﹣中的﹣20,則該函數(shù)圖象在每一象限內(nèi)yx的增大而增大,若點A(x1y1),B(x2y2)在同一象限內(nèi),當x1x2,則y1y2,故本選項說法錯誤.

C、當x1時,y=2,即圖象經(jīng)過點(1,﹣2),故本選項說法正確.

D、反比例函數(shù)y=﹣中的﹣20,則該函數(shù)圖象在每一象限內(nèi)yx的增大而增大,則當當x0時,yx的增大而增大,故本選項說法正確.

故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)。

1)該二次函數(shù)圖象的對稱軸是_____________________;

2)若該二次函數(shù)的圖象開口向上,當時,函數(shù)圖象的最高點為,最低點為,點的縱坐標為11,求點和點的坐標;

3)對于該二次函數(shù)圖象上的兩點,設,當時,均有,請結(jié)合圖象,求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)對徐州市相關(guān)的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖所示.

1)分別求出y1、y2x之間的函數(shù)關(guān)系式;

2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種蔬菜各進多少噸時 獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個完全相同的正五邊形ABCDE,AFGHM的邊DE,MH在同一直線上,且有一個公共頂點A,若正五邊形ABCDE繞點A旋轉(zhuǎn)x度與正五邊形AFGHM重合,則x的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,AC、BC邊上的中線BE、AD交于點,且,AC=20,AD=12.

1)求的長.

2)求的余弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有相距2kmAB兩個觀測站,B站在A站的正東方向上,從A站測得船C在北偏東60°的方向上,從B站測得船C在北偏東30°的方向上,則船C到海岸線l的距離為多少千米?(參考數(shù)據(jù):1.732,結(jié)果保留小數(shù)點后一位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司投入研發(fā)費用40萬元(40萬元只計入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為4/件.此產(chǎn)品年銷售量y(萬件)與售價x(元件)之間滿足函數(shù)關(guān)系式y=﹣x+20

(1)求這種產(chǎn)品第一年的利潤W(萬元)與售價x(元件)滿足的函數(shù)關(guān)系式;

(2)該產(chǎn)品第一年的利潤為24萬元,那么該產(chǎn)品第一年的售價是多少?

(3)第二年,該公司將第一年的利潤24萬元(24萬元只計入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為3/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價不超過第一年的售價,另外受產(chǎn)能限制,銷售量無法超過10萬件.請計算該公司第二年的利潤W2至少為多少萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,的位置如圖所示,已知,,點的坐標為.

1)求點的坐標;

2)求圖像經(jīng)過、三點的二次函數(shù)的解析式和這個函數(shù)圖像的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為反比例函數(shù)(其中)圖象上的一點,在軸正半軸上有一點,.連接,且.

1)求的值;

2)過點,交反比例函數(shù)(其中)的圖象于點,連接于點

①求線段的長;

②求線段、的長.

查看答案和解析>>

同步練習冊答案