【題目】如圖,矩形中,,,是邊上的一點,且,點在矩形所在的平面中,且,則的最大值是_________.
【答案】5+.
【解析】
由四邊形是矩形得到內(nèi)接于,利用勾股定理求出直徑BD的長,由確定點P在上,連接MO并延長,交于一點即為點P,此時PM最長,利用勾股定理求出OM,再加上OP即可得到PM的最大值.
連接BD,
∵四邊形ABCD是矩形,
∴∠BAD=∠BCD=90,AD=BC=8,
∴BD=10,
以BD的中點O為圓心5為半徑作,
∵,
∴點P在上,
連接MO并延長,交于一點即為點P,此時PM最長,且OP=5,
過點O作OH⊥AD于點H,
∴AH=AD=4,
∵AM=2,
∴MH=2,
∵點O、H分別為BD、AD的中點,
∴OH為△ABD的中位線,
∴OH=AB=3,
∴OM=,
∴PM=OP+OM=5+.
故答案為:5+.
科目:初中數(shù)學 來源: 題型:
【題目】為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調(diào)查,結果發(fā)現(xiàn),被調(diào)查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△BCD中,DF⊥BC于點F,點A為直線DF上一動點,以B為旋轉中心,把BA順時針方向旋轉60°至BE,連接EC.
(1)當點A在線段DF的延長線上時,
①求證:DA=CE;
②判斷∠DEC和∠EDC的數(shù)量關系,并說明理由;
(2)當∠DEC=45°時,連接AC,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,四邊形OABC的頂點A在軸的正半軸上,OA=4,OC=2,點P,點Q分別是邊BC,邊AB上的點,連結AC,PQ,點B1是點B關于PQ的對稱點.
(1)若四邊形OABC為矩形,如圖1,
①求點B的坐標;
②若BQ:BP=1:2,且點B1落在OA上,求點B1的坐標;
(2)若四邊形OABC為平行四邊形,如圖2,且OC⊥AC,過點B1作B1F∥軸,與對角線AC、邊OC分別交于點E、點F.若B1E: B1F=1:3,點B1的橫坐標為,求點B1的縱坐標,并直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸于、兩點,交軸于點,點的坐標為,直線經(jīng)過點、.
(1)求拋物線的函數(shù)表達式;
(2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標;
(3)過點的直線交直線于點,連接,當直線與直線的一個夾角等于的3倍時,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,與軸交于點.
(1)求點、、的坐標;
(2)若點在軸的上方,以、、為頂點的三角形與全等,平移這條拋物線,使平移后的拋物線經(jīng)過點與點,請你寫出平移過程,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大雁塔是現(xiàn)存最早規(guī)模最大的唐代四方樓閣式磚塔,被國務院批準列人第一批全國重點文物保護單位,某校社會實踐小組為了測量大雁塔的高度,在地面上處垂直于地面豎立了高度為米的標桿,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上,測得米,將標桿向后平移到點處,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上(點,點,點,點與古塔底處的點在同一直線上) ,這時測得米,米,請你根據(jù)以上數(shù)據(jù),計算古塔的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,O為BC的中點,作⊙O與AC相切于點D.
(1)求證:AB與⊙O相切;
(2)延長AC到E,使得CE=AC,連接BE交⊙O與點F、M,若AB=4,求FM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀,我們可以用換元法解簡單的高次方程,解方程x4﹣3x2+2=0時,可設y=x2,則原方程可比為y2+3y+2=0,解之得y1=2,y2=1,當y1=2時,則x2=2,即x1=,x2=﹣;當y2=1時,即x2=1,則x1=1,x2=﹣1,故原方程的解為x1=,x2=﹣,x3=1,x4=﹣1,仿照上面完成下面解答:
(1)已知方程(2x2+1)2+2x2﹣3=0,設y=2x2+1,則原方程可化為_______.
(2)仿照上述解法解方程:(x2﹣2x)2﹣3x2+6x=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com